满分5 > 初中数学试题 >

(2009•衡阳)如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60度. (...

(2009•衡阳)如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60度.
manfen5.com 满分网
(1)求⊙O的直径;
(2)若D是AB延长线上一点,连接CD,当BD长为多少时,CD与⊙O相切;
(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为t(s)(0<t<2),连接EF,当t为何值时,△BEF为直角三角形.
(1)根据已知条件知:∠BAC=30°,已知AB的长,根据直角三角形中,30°锐角所对的直角边等于斜边的一半可得AB的长,即⊙O的直径; (2)根据切线的性质知:OC⊥CD,根据OC的长和∠COD的度数可将OD的长求出,进而可将BD的长求出; (3)应分两种情况进行讨论,当EF⊥BC时,△BEF为直角三角形,根据△BEF∽△BAC,可将时间t求出; 当EF⊥BA时,△BEF为直角三角形,根据△BEF∽△BCA,可将时间t求出. 【解析】 (1)∵AB是⊙O的直径, ∴∠ACB=90°; ∵∠ABC=60°, ∴∠BAC=180°-∠ACB-∠ABC=30°; ∴AB=2BC=4cm,即⊙O的直径为4cm. (2)如图(1)CD切⊙O于点C,连接OC,则OC=OB=×AB=2cm. ∴CD⊥CO;∴∠OCD=90°; ∵∠BAC=30°, ∴∠COD=2∠BAC=60°; ∴∠D=180°-∠COD-∠OCD=30°; ∴OD=2OC=4cm; ∴BD=OD-OB=4-2=2(cm); ∴当BD长为2cm,CD与⊙O相切. (3)根据题意得: BE=(4-2t)cm,BF=tcm; 如图(2)当EF⊥BC时,△BEF为直角三角形,此时△BEF∽△BAC; ∴BE:BA=BF:BC; 即:(4-2t):4=t:2; 解得:t=1; 如图(3)当EF⊥BA时,△BEF为直角三角形,此时△BEF∽△BCA; ∴BE:BC=BF:BA; 即:(4-2t):2=t:4; 解得:t=1.6; ∴当t=1s或t=1.6s时,△BEF为直角三角形.
复制答案
考点分析:
相关试题推荐
(2009•铁岭)小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1,2,3,4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.
(1)用树状图或列表法求出小明先挑选的概率;
(2)你认为这个游戏公平吗?请说明理由.
查看答案
(2009•益阳)某校数学兴趣小组成员小华对本班上期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数、频率分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题:
(1)频数、频率分布表中a=______,b=______
(2)补全频数分布直方图;
(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少?
分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计
频数2a2016450
频率0.040.160.400.32b1


manfen5.com 满分网 查看答案
(2009•益阳)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.
(1)求每支钢笔和每本笔记本的价格;
(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.
查看答案
manfen5.com 满分网(2009•杭州)如图,在等腰梯形ABCD中,∠BCD=60°,AD∥BC,且AD=DC,E、F分别在AD、DC的延长线上,且DE=CF,AF、BE于点P.
(1)求证:AF=BE;
(2)请你猜测∠BPF的度数,并证明你的结论.
查看答案
(2009•黔东南州)如图,在凯里市某广场上空飘着一只汽球P,A、B是地面上相距90米的两点,它们分别在汽球的正西和正东,测得仰角∠PAB=45°,仰角∠PBA=30°,求汽球P的高度.(精确到0.1米,manfen5.com 满分网=1.732)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.