满分5 > 初中数学试题 >

(2009•唐山二模)如图,在平面直角坐标系中,点A,B分别在x轴,y轴上,线段...

(2009•唐山二模)如图,在平面直角坐标系中,点A,B分别在x轴,y轴上,线段OA=6,OB=12,C是线段AB的中点,点D在线段OC上,OD=2CD.
(1)C点坐标为______
(2)求直线AD的解析式;
(3)直线OC绕点O逆时针旋转90°,求出点D的对应点D′的坐标.

manfen5.com 满分网
(1)因为点A,B分别在x轴,y轴上,线段OA=6,OB=12,所以A(6,0)、B(0,12),又因C是线段AB的中点,利用线段中点的公式即可求出C的坐标为(3,6); (2)要求直线AD的解析式,已知A的坐标,需求D的坐标,因为点D在线段OC上,OD=2CD,所以可作CE⊥x轴于点E,DF⊥x轴于点F,则OE=OA=3,CE=OB=6,因为DF∥CE,可得,从而可求出OF=2,DF=4, 即点D的坐标为(2,4),然后可设直线AD的解析式为y=kx+b.把A(6,0),D(2,4)代入得到关于k、b的方程组,解之即可; (3)因为直线OC绕点O逆时针旋转90°,所以D也作了相同的旋转,要求点D的对应点D′的坐标,需作D′M⊥x轴于点M,DN⊥y轴于点N,由旋转可知:∠DOD′=90°,OD=OD’,利用同角的余角相等可得∠D′OM=∠DON,所以可证Rt△MOD′≌Rt△DOF,所以D′M=OF=2,OD′=DF=4,又因点D′在第二象限,所以D′点坐标为(-4,2). 【解析】 (1)(3,6); (2)作CE⊥x轴于点E,DF⊥x轴于点F,则OE=OA=3,CE=OB=6, ∵DF∥CE,, 得OF=2,DF=4, ∴点D的坐标为(2,4), 设直线AD的解析式为y=kx+b. 把A(6,0),D(2,4)代入得, 解得, ∴直线AD的解析式为y=-x+6. (3)作D′M⊥x轴于点M, 由旋转可知:∠DOD’=90°,OD=OD’, ∴∠MOD′+∠DOF=90°, ∵∠ODF=90°, ∴∠ODF+∠DOF=90°, ∴∠ODF=∠MOD’, ∴△MOD′≌△DOF,(7分) ∴D′M=OF=2,OD′=DF=4, 又∵点D′在第二象限, ∴D′点坐标为(-4,2).
复制答案
考点分析:
相关试题推荐
(2008•沈阳)在学校组织的“知荣明耻,文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:
manfen5.com 满分网
请你根据以上提供的信息解答下列问题:
(1)此次竞赛中二班成绩在C级以上(包括C级)的人数为______
(2)请你将表格补充完整:
平均数( 分)中位数( 分)众数( 分)
一班87.690
二班87.6100
(3)请从下列不同角度对这次竞赛成绩的结果进行分析:
①从平均数和中位数的角度来比较一班和二班的成绩;
②从平均数和众数的角度来比较一班和二班的成绩;
③从B级以上(包括B级)的人数的角度来比较一班和二班的成绩.
查看答案
(2006•烟台)如图1,O为圆柱形木块底面的圆心,过底面的一条弦AD,沿母线AB剖开,得剖面矩形ABCD,AD=24cm,AB=25cm.若manfen5.com 满分网的长为底面周长的manfen5.com 满分网,如图2所示.
(1)求⊙O的半径;
(2)求这个圆柱形木块的表面积.(结果可保留π和根号)

manfen5.com 满分网 查看答案
(2013•德城区二模)解方程:manfen5.com 满分网
查看答案
在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P的坐标是    查看答案
(2009•宁波)如图,⊙A、⊙B的圆心A、B在直线l上,两圆半径都为1cm,开始时圆心距AB=4cm,现⊙A、⊙B同时沿直线l以每秒2cm的速度相向移动,则当两圆相切时,⊙A运动的时间为    秒.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.