满分5 > 初中数学试题 >

(2012•浦江县模拟)在下面的图形中,既是轴对称图形又是中心对称图形的是( )...

(2012•浦江县模拟)在下面的图形中,既是轴对称图形又是中心对称图形的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
根据轴对称图形与中心对称图形的概念求解. 【解析】 A、是轴对称图形,不是中心对称图形,不符合题意; B、不是轴对称图形,是中心对称图形,不符合题意; C、既是轴对称图形,也是中心对称图形,符合题意; D、是轴对称图形,不是中心对称图形,不符合题意. 故选C.
复制答案
考点分析:
相关试题推荐
(2009•武汉)今年某市约有102 000名应届初中毕业生参加中考,102 000用科学记数法表示为( )
A.0.102×106
B.1.02×105
C.10.2×104
D.102×103
查看答案
(2010•下城区模拟)矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线manfen5.com 满分网与BC边相交于点D.
(1)若抛物线y=ax2+bx(a≠0)经过D、A两点,试确定此抛物线的表达式;
(2)若以点A为圆心的⊙A与直线OD相切,试求⊙A的半径;
(3)设(1)中抛物线的对称轴与直线OD交于点M,在对称轴上是否存在点Q,以Q、O、M为顶点的三角形与△OCD相似?若存在,试求出符合条件的Q点的坐标;若不存在,试说明理由.

manfen5.com 满分网 查看答案
(2013•武汉模拟)如图①,将一张直角三角形纸片△ABC折叠,使点A与点C重合,这时DE为折痕,△CBE为等腰三角形;再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.
(1)如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如果能,请在图②中画出折痕;
(2)如图③,在正方形网格中,以给定的BC为一边,画出一个斜三角形ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形;
(3)若一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是什么?
manfen5.com 满分网
查看答案
(2009•包头)如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.
(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABmanfen5.com 满分网C三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
查看答案
(2008•恩施州)国家教育部规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市今年初中毕业生学业考试体育学科分值提高到40分,成绩记入考试总分.某中学为了了解学生体育活动情况,随机调查了720名毕业班学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,所得的数据制成了如图的扇形统计图和频数分布图.根据图示,解答下列问题:
(1)若在被调查的学生中随机选出一名学生测试其体育成绩,选出的恰好是“每天锻炼超过1小时”的学生的概率是多少?
(2)“没时间”的人数是多少?并补全频数分布图;
(3)2009年某市初中毕业生约为4.3万人,按此调查,可以估计2009年全市初中毕业生中每天锻炼未超过1小时的学生约有多少万人?
(4)请根据以上结论谈谈你的看法.
manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.