满分5 > 初中数学试题 >

(2009•乐山)如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点...

(2009•乐山)如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点.若OA、OB(OA<OB)的长分别是方程x2-4x+3=0的两根,且∠DAB=45°.
(1)求抛物线对应的二次函数解析式;
(2)过点A作AC⊥AD交抛物线于点C,求点C的坐标;
(3)在(2)的条件下,过点A任作直线l交线段CD于点P,若点C、D到直线l的距离分别记为d1、d2,试求的d1+d2的最大值.

manfen5.com 满分网
(1)通过解方程即可求得OA、OB的长,从而得到点A、B的坐标,由于A、B关于抛物线的对称轴对称,且∠DAB=45°,那么△DAB是等腰直角三角形,即可利用点A、B的坐标求得点D的坐标,然后根据待定系数法求得抛物线的解析式; (2)由于AC⊥AD,且∠DAB=45°,则∠CAB=45°,设出点C的横坐标,那么其纵坐标应为m+1,然后将C点坐标代入抛物线的解析式中,即可求得点C的坐标; (3)易得AC、AD的长,由于△ACD是直角三角形,那么AC•AD=AP•d1+AP•d2,由此可得d1+d2=,过A作AM⊥CD于M,利用△ACD的面积可求得AM的长,在Rt△APM中,AP≥AM,故d1+d2≤,而AC、AD、AM的长都已求得,由此可确定d1+d2的最大值. 【解析】 (1)解方程x2-4x+3=0得: x=1或x=3,而OA<OB, 则点A的坐标为(-1,0),点B的坐标为(3,0);(1分) ∵A、B关于抛物线对称轴对称, ∴△DAB是等腰三角形,而∠DAB=45°, ∴△DAB是等腰直角三角形,得D(1,-2); 令抛物线对应的二次函数解析式为y=a(x-1)2-2, ∵抛物线过点A(-1,0), ∴0=4a-2,得a=, 故抛物线对应的二次函数解析式为y=(x-1)2-2(或写成y=x2-x-);(4分) (2)∵CA⊥AD,∠DAC=90°,(5分) 又∵∠DAB=45°, ∴∠CAB=45°; 令点C的坐标为(m,n),则有m+1=n,(6分) ∵点C在抛物线上, ∴n=(m-1)2-2;(7分) 化简得m2-4m-5=0 解得m=5,m=-1(舍去), 故点C的坐标为(5,6);(8分) (3)由(2)知AC=6,而AD=2, ∴DC=; 过A作AM⊥CD, 又∵, ∴AM=,(9分) 又∵S△ADC=S△APD+S△APC ∴,(11分) d1+d2=; 即此时d1+d2的最大值为4.(12分)
复制答案
考点分析:
相关试题推荐
(2009•柳州)如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.
(1)求证:CF=BF;
(2)若AD=2,⊙O的半径为3,求BC的长.

manfen5.com 满分网 查看答案
(2009•铁岭)某旅游区有一个景观奇异的望天洞,D点是洞的入口,游人从入口进洞游览后,可经山洞到达山顶的出口凉亭A处观看旅游区风景,最后坐缆车沿索道AB返回山脚下的B处.在同一平面内,若测得斜坡BD的长为100米,坡角∠DBC=10°,在B处测得A的仰角∠ABC=40°,在D处测得A的仰角∠ADF=85°,过D点作地面BE的垂线,垂足为C.
(1)求∠ADB的度数;
(2)求索道AB的长.(结果保留根号)

manfen5.com 满分网 查看答案
(2009•滨州)根据题意,解答下列问题:
manfen5.com 满分网
(1)如图①,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长;
(2)如图②,类比(1)的求解过程,请你通过构造直角三角形的方法,求出两点M(3,4),N(-2,-1)之间的距离;
(3)如图③,P1(x1,y1),P2(x1,y2)是平面直角坐标系内的两点.求证:manfen5.com 满分网
查看答案
(2009•莱芜)某中学对全校学生60秒跳绳的次数进行了统计,全校平均次数是100次.某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包括左端点,不包括右端点):
求:(1)该班60秒跳绳的平均次数至少是多少?是否超过全校平均次数?
(2)该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围;
(3)从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是多少?

manfen5.com 满分网 查看答案
(2009•江津区)如图,反比例函数y=manfen5.com 满分网的图象与一次函数y=kx+b的图象交于点A(m,2),点B(-2,n),一次函数图象与y轴的交点为C.
(1)求一次函数解析式;
(2)求C点的坐标;
(3)求△AOC的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.