满分5 > 初中数学试题 >

(2010•黔南州)如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=...

(2010•黔南州)如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为m,
①用m的代数式表示点P的坐标;
②当m为何值时,线段PB最短;
(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据A点的坐标,用待定系数法即可求出直线OA的解析式. (2)①由于M点在直线OA上,可根据直线OA的解析式来表示出M点的坐标,因为M点是平移后抛物线的顶点,因此可用顶点式二次函数通式来设出这个二次函数的解析式,P的横坐标为2,将其代入抛物线的解析式中即可得出P点的坐标. ②PB的长,实际就是P点的纵坐标,因此可根据其纵坐标的表达式来求出PB最短时,对应的m的值. (3)根据(2)中确定的m值可知:M、P点的坐标都已确定,因此AM的长为定值,若要使△QMA的面积与△PMA的面积相等,那么Q点到AM的距离和P到AM的距离应该相等,因此可分两种情况进行讨论: ①当Q在直线OA下方时,可过P作直线OA的平行线交y轴于C,那么平行线上的点到OA的距离可相等,因此Q点必落在直线PC上,可先求出直线PC的解析式,然后利用抛物线的解析式,看得出的方程是否有解,如果没有则说明不存在这样的Q点,如果有解,得出的x的值就是Q点的横坐标,可将其代入抛物线的解析式中得出Q点的坐标. ②当Q在直线OA上方时,同①类似,可先找出P关于A点的对称点D,过D作直线OA的平行线交y轴于E,那么直线DE上的点到AM的距离都等于点P到AM上的距离,然后按①的方法进行求解即可. (本题也可通过以AP为底,找出和点M到AP的距离相等的两条直线,然后联立抛物线的解析式进行求解即可). 【解析】 (1)设OA所在直线的函数解析式为y=kx, ∵A(2,4), ∴2k=4, ∴k=2, ∴OA所在直线的函数解析式为y=2x. (2)①∵顶点M的横坐标为m,且在线段OA上移动, ∴y=2m(0≤m≤2). ∴顶点M的坐标为(m,2m). ∴抛物线函数解析式为y=(x-m)2+2m. ∴当x=2时,y=(2-m)2+2m=m2-2m+4(0≤m≤2). ∴点P的坐标是(2,m2-2m+4). ②∵PB=m2-2m+4=(m-1)2+3, 又∵0≤m≤2, ∴当m=1时,PB最短. (3)当线段PB最短时,此时抛物线的解析式为y=(x-1)2+2 即y=x2-2x+3. 假设在抛物线上存在点Q,使S△QMA=S△PMA. 设点Q的坐标为(x,x2-2x+3). ①点Q落在直线OA的下方时,过P作直线PC∥AO,交y轴于点C, ∵PB=3,AB=4, ∴AP=1, ∴OC=1, ∴C点的坐标是(0,-1). ∵点P的坐标是(2,3), ∴直线PC的函数解析式为y=2x-1. ∵S△QMA=S△PMA, ∴点Q落在直线y=2x-1上. ∴x2-2x+3=2x-1. 解得x1=2,x2=2, 即点Q(2,3). ∴点Q与点P重合. ∴此时抛物线上存在点Q(2,3),使△QMA与△APM的面积相等. ②当点Q落在直线OA的上方时, 作点P关于点A的对称称点D,过D作直线DE∥AO,交y轴于点E, ∵AP=1, ∴EO=DA=1, ∴E、D的坐标分别是(0,1),(2,5), ∴直线DE函数解析式为y=2x+1. ∵S△QMA=S△PMA, ∴点Q落在直线y=2x+1上. ∴x2-2x+3=2x+1. 解得:x1=2+,x2=2-. 代入y=2x+1得:y1=5+2,y2=5-2. ∴此时抛物线上存在点Q1(2+,5+2),Q2(2-,5-2) 使△QMA与△PMA的面积相等. 综上所述,抛物线上存在点,Q1(2+,5+2),Q2(2-,5-2),Q3(2,3),使△QMA与△PMA的面积相等.
复制答案
考点分析:
相关试题推荐
(2001•金华)某瓜果基地市场部为指导某地某种蔬菜的生产和销售,在对历年市场行情和生产情况进行了调查的基础上,对今年这种蔬菜上市后的市场售价和生产成本进行了预测,提供了两个方面的信息.如图(1)(2)两图.
注:两图中的每个实心黑点所对应的纵坐标分别指相应月份的售价和成本,生产成本6月份最低;图(1)的图象是线段,图(2)的图象是抛物线.
(1)在3月份出售这种蔬菜,每千克的收益(收益=售价-成本)是多少元
(2)设x月份出售这种蔬菜,每千克收益为y元,求y关于x的函数解析式;
(3)问哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.
manfen5.com 满分网
查看答案
如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.
(1)试判断BC所在直线与小圆的位置关系,并说明理由;
(2)试判断线段AC、AD、BC之间的数量关系,并说明理由.

manfen5.com 满分网 查看答案
(2008•贵阳)利用图象解一元二次方程x2+x-3=0时,我们采用的一种方法是:在平面直角坐标系中画出抛物线y=x2和直线y=-x+3,两图象交点的横坐标就是该方程的解.
(1)填空:利用图象解一元二次方程x2+x-3=0,也可以这样求【解析】
在平面直角坐标系中画出抛物线y=______和直线y=-x,其交点的横坐标就是该方程的解.
(2)已知函数y=-manfen5.com 满分网的图象(如图所示),利用图象求方程manfen5.com 满分网-x+3=0的近似解.(结果保留两个有效数字)

manfen5.com 满分网 查看答案
(2009•烟台)将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.
(1)从中随机抽出一张牌,牌面数字是偶数的概率是______
(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是______
(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.

manfen5.com 满分网 查看答案
(2009•山西)已知每个网格中小正方形的边长都是1,图1中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成.
(1)填空:图1中阴影部分的面积是______(结果保留π);
(2)请你在图2中以图1为基本图案,借助轴对称、平移或旋转设计一个完整的花边图案(要求至少含有两种图形变换).manfen5.com 满分网

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.