满分5 > 初中数学试题 >

(2009•襄阳)如图,已知:在⊙O中,直径AB=4,点E是OA上任意一点,过E...

(2009•襄阳)如图,已知:在⊙O中,直径AB=4,点E是OA上任意一点,过E作弦CD⊥AB,点F是manfen5.com 满分网上一点,连接AF交CE于H,连接AC、CF、BD、OD.
(1)求证:△ACH∽△AFC;
(2)猜想:AH•AF与AE•AB的数量关系,并说明你的猜想;
(3)探究:当点E位于何处时,S△AEC:S△BOD=1:4,并加以说明.

manfen5.com 满分网
(1)根据垂径定理得到弧AC=弧AD,再根据圆周角定理的推论得到∠F=∠ACH,根据两个角对应相等证明两个三角形相似; (2)连接BF,构造直角三角形,把要探索的四条线段放到两个三角形中,根据相似三角形的判定和性质证明; (3)根据三角形的面积公式,得到两个三角形的面积比即为AE:OB,进一步转化为AE:AO的比,再根据半径的长求得OE的长. (1)证明:∵直径AB⊥CD, ∴, ∴∠F=∠ACH, 又∠CAF=∠FAC, ∴△ACH∽△AFC. (2)【解析】 AH•AF=AE•AB. 证明:连接FB, ∵AB是直径, ∴∠AFB=∠AEH=90°, 又∠EAH=∠FAB, ∴Rt△AEH∽Rt△AFB, ∴, ∴AH•AF=AE•AB. (3)【解析】 当时,S△AEC:S△BOD=1:4. 理由:∵直径AB⊥CD, ∴CE=ED, ∵S△AEC=AE•EC, S△BOD=OB•ED, ∴===, ∵⊙O的半径为2, ∴, ∴8-4OE=2, ∴OE=. 即当点E距离点O 时S△AEC:S△BOD=1:4.
复制答案
考点分析:
相关试题推荐
(2010•黔南州)为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.
(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?
(2)若该县的A类学校不超过5所,则B类学校至少有多少所?
(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?
查看答案
manfen5.com 满分网(2012•南开区一模)如图,AB为⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,已知∠D=30°.
(1)求∠A的度数;
(2)若点F在⊙O上,CF⊥AB,垂足为E,CF=manfen5.com 满分网,求图中阴影部分的面积.
查看答案
(2009•咸宁)在一次“爱心助学”捐款活动中,九(1)班同学人人拿出自己的零花钱,踊跃捐款,学生捐款额有5元、10元、15元、20元四种情况.根据统计数据绘制了图①和图②两幅尚不完整的统计图.
manfen5.com 满分网
(1)该班共有______名同学,学生捐款的众数是______
(2)请你将图②的统计图补充完整;
(3)计算该班同学平均捐款多少元?
查看答案
如图,如下图均为2×2的正方形网格,每个小正方形的边长均为1.请分别在四个图中各画出一个与△ABC成轴对称、顶点在格点上,且位置不同的三角形.
manfen5.com 满分网
查看答案
(2009•漳州)给出三个多项式:manfen5.com 满分网x2+2x-1,manfen5.com 满分网x2+4x+1,manfen5.com 满分网x2-2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.