满分5 > 初中数学试题 >

(2006•济宁)如图,以O为原点的直角坐标系中,A点的坐标为(0,1),直线x...

(2006•济宁)如图,以O为原点的直角坐标系中,A点的坐标为(0,1),直线x=1交x轴于点B.P为线段AB上一动点,作直线PC⊥PO,交直线x=1于点C.过P点作直线MN平行于x轴,交y轴于点M,交直线x=1于点N.
(1)当点C在第一象限时,求证:△OPM≌△PCN;
(2)当点C在第一象限时,设AP长为m,四边形POBC的面积为S,请求出S与m之间的函数关系式,并写出自变量m的取值范围;
(3)当点P在线段AB上移动时,点C也随之在直线x=1上移动,△PBC能否成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形的点P的坐标;如果不可能,请说明理由.
manfen5.com 满分网
(1)根据∠OPC=90°和同角的余角相等,我们可得出三角形OPM和PCN中两组对应角相等,要证两三角形全等,必须有相等的边参与,已知了OA=OB,因此三角形OAB是等腰直角三角形,那么三角形AMP也是个等腰三角形,AM=MP,OA=OB=MN,由此我们可得出OM=PN,由此我们可得出两三角形全等. (2)知道了A的坐标,也就知道了OA、OB、MN的长,在直角三角形AMP中,我们知道了AP为m,那么可用m表示出AM、MP,也就能表示出OM、BN,PN的长,那么可根据四边形OPCB的面积=矩形的面积-三角形OMP的面积-三角形PCN的面积,来求出S,m的函数关系式.然后根据C在第一象限,得出CN的取值范围,进而求出m的取值范围. (3)要分两种情况进行讨论: 当C在第一象限时,要想使PCB为等腰三角形,那么PC=CB,∠PBC=45°,因此此时P与A重合,那么P的坐标就是A的坐标. 当C在第四象限时,要想使PCB为等腰三角形,那么PB=BC,在等腰直角三角形PBN中,我们可以用m表示出BP的长,也就表示出了BC的长,然后根据(1)中的全等三角形,可得出MP=NC,那么可用这两个含未知数m的式子得出关于m的方程来求出m的值.那么也就求出了PM、OM的长,也就得出了P点的坐标. (1)证明:∵OM∥BN,MN∥OB,∠AOB=90° ∴四边形OBNM为矩形 ∴MN=OB=1,∠PMO=∠CNP=90° ∵OA=OB, ∴∠1=∠3=45° ∵MN∥OB, ∴∠2=∠3=45° ∴∠1=∠2=45°, ∴AM=PM ∴OM=OA-AM=1-AM,PN=MN-PM=1-PM ∴OM=PN ∵∠OPC=90°, ∴∠4+∠5=90°, 又∵∠4+∠6=90°, ∴∠5=∠6 ∴△OPM≌△PCN (2)【解析】 ∵AM=PM=APsin45°=, ∴OM= ∴S=S矩形OBNM-2S△POM=(1-m)-2×(1-m)•m =m2-m+1(0≤m<). (3)【解析】 △PBC可能成为等腰三角形 ①当P与A重合时,PC=BC=1,此时P(0,1) ②当点C在第四象限,且PB=CB时 有BN=PN=1- ∴BC=PB=PN= ∴NC=BN+BC=1-+-m 由(2)知:NC=PM= ∴1-+-m= 整理得(+1)m=+1 ∴m=1 ∴PM==,BN=1-=1- ∴P(,1-) 由题意可知PC=PB不成立 ∴使△PBC为等腰三角形的点P的坐标为(0,1)或(,1-).
复制答案
考点分析:
相关试题推荐
如图,某校团委组织新团员到某公园春游,大家乘坐时速为40千米的校车,出发2小时后团委书记有急事需返校,于是立即下车乘坐出租车返回学校,办事用了20分钟后还是坐该出租车以原速追赶团员队伍,结果在途中相遇.(两车的速度近似匀速,上下车的时间忽略不计)
(1)求团委书记追赶到团员队伍时离学校的距离;
(2)团委书记继续乘坐出租车前往公,结果团委书记比团员早到30分钟到达公园,求公园与学校的距离.
manfen5.com 满分网
查看答案
如图为某一风景区的步行台阶,为了安全着想,准备将台阶进行改善,把倾角由44°减至32°,已知原台阶AB的长为5米(BC所在地面为水平面)
画出示意图并求出改善后的台阶会多占多长一段地面?(精确到0.01米)

manfen5.com 满分网 查看答案
(2009•硚口区一模)家家乐超市销售某种品牌的纯牛奶,已知进价为每箱45元.市场调查发现:若每箱以60元销售,平均每天可销售40箱,价格每降低1元,平均每天多销售20箱,但售价不能低于48元,设每箱降价x元(x为正整数)
(1)写出平均每天销售y(箱)与x(元)之间的函数关系式及自变量x的取值范围;
(2)如何定价才能使超市平均每天销售这种牛奶的利润最大?最大利润为多少?
查看答案
如图为甲、乙两个转盘,分别分为4等分和3等分.
(1)转动指针,分别求出指针指向红色区域的概率;
(2)同时转动指针,求出两指针都指向红色区域的概率.

manfen5.com 满分网 查看答案
如图,已知矩形ABCD,AP⊥AC交BD的延长线于P,点E在AP上,以AE为直径的⊙O正好过D点.
(1)判断BD与⊙O的位置关系,并予以证明;
(2)若PE=1,PD=2,求⊙O的半径长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.