满分5 > 初中数学试题 >

(2006•遵义)如图,在直角梯形ABCD中,AB∥CD,∠A=90°,AB=2...

(2006•遵义)如图,在直角梯形ABCD中,AB∥CD,∠A=90°,AB=2,AD=5,P是AD上一动点(不与A、D重合),PE上BP,P为垂足,PE交DC于点E.
(1)△ABP和△DPE是否相似?请说明理由;
(2)设AP=x,DE=y,求y与x之间的函数关系式,并指出x的取值范围;
(3)请你探索在点P运动的过程中,四边形ABED能否构成矩形?如果能,求出AP的长;如果不能,请说明理由;
(4)请你探索在点P的运动过程中,△BPE能否构成等腰三角形?如果能.求出AP的长;如果不能,请说明理由.

manfen5.com 满分网
(1)△ABP和△DPE是相似的,∵∠A=∠D=90°,而∠BPE=90°,根据这两个条件可以证明它们相似; (2)根据(1)得到,根据这个结论就可以求出y与x之间的函数关系式; (3)能构成矩形,∵四边形ABED已经是直角梯形,若AB=DE它就是矩形,根据这个条件和(2)中函数关系式可以求出AP长; (4)能构成等腰三角形,当AP=DE时,△ABP≌△DPE,这样可以得到BP=PE,此时△BPE为等腰三角形,然后根据函数关系式就可以求出AP长. 【解析】 (1)△ABP∽△DPE. (2)由(1)△ABP∽△DPE, ∴∴, ∴y=-x2+x(0<x<5). (3)能构成矩形. 当DE=AB=2时,∵AB∥DE,AB=DE, ∴四边形ABED为平行四边形, ∵∠A=90°, ∴平行四边形ABED为矩形. 由(2)有-x2+x=2.x1=1,x2=4. ∴当AP=1或AP=4时,ABED是矩形.(9分) (4)能构成等腰三角形. 当AP=DE时,△ABP≌△DPE,此时△BPE为等腰三角形.(1O分) 即-x2+x=x.解之得x1=3,x2=0(舍去). 即AP=3时,△BPE是等腰三角形(答等腰直角三角形同样正确).(12分)
复制答案
考点分析:
相关试题推荐
(2006•肇庆)如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:
(1)经过多少时间,△AMN的面积等于矩形ABCD面积的manfen5.com 满分网
(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2006•菏泽)(课改区)下面方格中是美丽可爱的小金鱼,在方格中分别画出原图形向右平移五个格和把原图形以点A为旋转中心顺时针方向旋转90°得到的小金鱼(只要求画出平移、旋转后的图形,不要求写出作图步骤和过程).
若每个小方格的边长均为1cm,则小金鱼所占的面积为______cm2.(直接写出结果)
(非课改区)已知关于x的方程kx2+2(k+1)x+(k-1)=0
(1)若此方程有两个实数根(包括重根的情况),求k的取值范围;
(2)k为何值时,此方程的两根之和等于两根之积.

manfen5.com 满分网 查看答案
(2006•临汾)如图,点O是已知线段AB上一点,以OA为半径的⊙O交线段AB于点C,以线段OB为直径的圆与⊙O的一个交点为D,过点A作AB的垂线交BD的延长线于点M.
(1)求证:BD是⊙O的切线;
(2)若BC,BD的长度是关于x的方程x2-6x+8=0的两个根,求⊙O的半径;
(3)在上述条件下,求线段MD的长.

manfen5.com 满分网 查看答案
(2006•无锡)如图,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD、DA向终点A运动(P、Q两点中,有一个点运动到终点时,所有运动即终止).设P、Q同时出发并运动了t秒.
(1)当PQ将梯形ABCD分成两个直角梯形时,求t的值;
(2)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存在,求出这样的t的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2006•河南)如图△ABC中,∠ACB=90度,AC=2,BC=3.D是BC边上一点,直线DE⊥BC于D,交AB于点E,CF∥AB交直线DE于F.设CD=x.
(1)当x取何值时,四边形EACF是菱形?请说明理由;
(2)当x取何值时,四边形EACD的面积等于2?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.