满分5 > 初中数学试题 >

(2006•镇江)如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,...

(2006•镇江)如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与x轴相交于点A,与y轴相交于点B.
(1)点P在运动时,线段AB的长度也在发生变化,请写出线段AB长度的最小值,并说明理由;
(2)在⊙O上是否存在一点Q,使得以Q,O,A,P为顶点的四边形是平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)如图,设AB的中点为C,连接OP,由于AB是圆的切线,故△OPC是直角三角形,所以当OC与OP重合时,OC最短; (2)分两种情况:如图(1),当四边形APOQ是正方形时,△OPA,△OAQ都是等腰直角三角形,可求得点Q的坐标为(,-),如图(2),可求得∠QOP=∠OPA=90°,由于OP=OQ,故△OPQ是等腰直角三角形,可求得点Q的坐标为(-,). 【解析】 (1)线段AB长度的最小值为4, 理由如下: 连接OP, ∵AB切⊙O于P, ∴OP⊥AB, 取AB的中点C, 则AB=2OC; 当OC=OP时,OC最短, 即AB最短, 此时AB=4; (2)设存在符合条件的点Q, 如图①,设四边形APOQ为平行四边形; ∵∠APO=90°, ∴四边形APOQ为矩形, 又∵OP=OQ, ∴四边形APOQ为正方形, ∴OQ=QA,∠QOA=45°; 在Rt△OQA中,根据OQ=2,∠AOQ=45°, 得Q点坐标为(,-); 如图②,设四边形APQO为平行四边形; ∵OQ∥PA,∠APO=90°, ∴∠POQ=90°, 又∵OP=OQ, ∴∠PQO=45°, ∵PQ∥OA, ∴PQ⊥y轴; 设PQ⊥y轴于点H, 在Rt△OHQ中,根据OQ=2,∠HQO=45°, 得Q点坐标为(-,). ∴符合条件的点Q的坐标为(,-)或(-,).
复制答案
考点分析:
相关试题推荐
(2006•深圳)如图1,在平面直角坐标系xOy中,点M在x轴的正半轴上,⊙M交x轴于A、B两点,交y轴于C、D两点,且C为manfen5.com 满分网的中点,AE交y轴于G点,若点A的坐标为(-2,0),AE=8.
manfen5.com 满分网
(1)求点C的坐标;
(2)连接MG、BC,求证:MG∥BC;
(3)如图2,过点D作⊙M的切线,交x轴于点P.动点F在⊙M的圆周上运动时,manfen5.com 满分网的比值是否发生变化?若不变,求出比值;若变化,说明变化规律.
查看答案
(2006•舟山)如图1,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.
(1)试问△OBC与△ABD全等吗?并证明你的结论;
(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由;
(3)如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示m.manfen5.com 满分网
查看答案
(2006•镇江)在平面直角坐标系中描出下列各点:A(2,1),B(0,1),C(-4,-3),D(6,-3),并将各点用线段依次连接构成一个四边形ABCD.
(1)四边形ABCD是什么特殊的四边形?答:______
(2)在四边形ABCD内找一点P,使得△APB,△BPC,△CPD,△APD都是等腰三角形,请写出P点的坐标.

manfen5.com 满分网 查看答案
manfen5.com 满分网(2007•双柏县)如图所示,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,点P不与点0、点A重合.连接CP,过点P作PD交AB于点D.
(1)求点B的坐标;
(2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标;
(3)当点P运动什么位置时,使得∠CPD=∠OAB,且manfen5.com 满分网,求这时点P的坐标.
查看答案
(2006•吉林)如图,在平面直角坐标系中,有一矩形COAB,其中三个顶点的坐标分别为C(0,3),O(0,0)和A(4,0),点B在⊙O上.
(1)求点B的坐标;
(2)求⊙O的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.