满分5 > 初中数学试题 >

(2006•大兴安岭)如图,在平面直角坐标系中,点A、B分别在x轴、y轴上,线段...

(2006•大兴安岭)如图,在平面直角坐标系中,点A、B分别在x轴、y轴上,线段OA、OB的长(0A<OB)是方程x2-18x+72=0的两个根,点C是线段AB的中点,点D在线段OC上,OD=2CD.
(1)求点C的坐标;
(2)求直线AD的解析式;
(3)P是直线AD上的点,在平面内是否存在点Q,使以0、A、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)因为点A、B分别在x轴、y轴上,线段OA、OB的长(0A<OB)是方程x2-18x+72=0的两个根,所以解这个方程即可得到OA=6,OB=12.又因点C是线段AB的中点,利用直角三角形斜边上的中线等于斜边的一半可知OC=AC.可作CE⊥x轴于点E,利用等腰三角形的三线合一可得,OE=OA=3,所以CE是三角形的中位线,CE=OB=6.得出点C的坐标; (2)要求直线AD的解析式,需求出D的坐标.可作DF⊥x轴于点F,因为CE⊥x轴,所以可得△OFD∽△OEC,=,于是可求得OF=2,DF=4,从而求得点D的坐标.设直线AD的解析式为y=kx+b,把A、D的坐标代入,利用方程组即可求解; (3)由(2)中D的坐标可知,DA=AF=4,所以∠OAD=45°,因为以O、A、P、Q为顶点的四边形是菱形,所以需分情况讨论: 若P在x轴上方,OAPQ是菱形,则PQ∥OA,PQ=OA=6=AP.过P作PM⊥x轴,因为∠OAD=45°,利用三角函数可求出PM=AM=3,OM=6-3,即P(6-3,3),得出Q的横坐标为6-3-6=-3,Q1(-3,3);若P在x轴下方,OAPQ是菱形,则PQ∥OA,PQ=OA=6=AP.过P作PM⊥x轴,因为∠MAP=∠OAD=45°,利用三角函数可求出PM=AM=3,OM=6+3,即P(6+3,-3),得出Q的横坐标为6+3-6=3,Q2(3,-3);若Q在x轴上方,OAQP是菱形,则∠OAQ=2∠OAD=90°,所以此时OAQP是正方形.又因正方形边长为6,所以此时Q(6,6);若Q在x轴下方,OPAQ是菱形,则∠PAQ=2∠OAD=90°,所以此时OPAQ是正方形.又因正方形对角线为6,由正方形的对称性可得Q(3,-3). 【解析】 (1)方程x2-18x+72=0,因式分解得:(x-6)(x-12)=0, 解得:x1=6,x2=12,即OA=6,OB=12, 在直角三角形OAB中,点C是斜边AB的中点, ∴OC=AC=AB. 作CE⊥x轴于点E.则CE∥OB,点C为中点, ∴E为OA的中点,CE为△OAB的中位线, ∴OE=OA=3,CE=OB=6. ∴点C的坐标为(3,6); (2)作DF⊥x轴于点F. △OFD∽△OEC,=,于是可求得OF=2,DF=4. ∴点D的坐标为(2,4). 设直线AD的解析式为y=kx+b. 把A(6,0),D(2,4)代入得 解得 ∴直线AD的解析式为y=-x+6; (3)存在.如图:分为P在x轴上方和P在x轴下方两种情况, Q1(-3,3);(1分) Q2(3,-3);(1分) Q3(3,-3);(1分) Q4(6,6).
复制答案
考点分析:
相关试题推荐
(2006•永春县)函数y=-x+4与x轴交于点A,与y轴交于点B,动点M在x轴的正半轴上,N为OM的中点,过M、N分别作x轴的垂线,交直线于点P、Q,设N点的坐标为(x,0).
(1)直接写出M点的坐标(____________);
(2)如图1,若点M在线段OA上运动,用含x的代数式表示四边形MPNQ的面积;
(3)如图2,已知C(8,0),D为AC的中点,若点M在线段CD(含线段的端点)上运动,求线段MP、NQ与直线y=-x+4、x轴所围成的图形的面积的最大值.
manfen5.com 满分网
查看答案
(2006•漳州)已知△ABC,∠BAC=90°,AB=AC=4,BD是AC边上的中线,分别以AC,AB所在直线为x轴,y轴建立直角坐标系(如图).
(1)在BD所在直线上找出一点P,使四边形ABCP为平行四边形,画出这个平行四边形,并简要叙述其过程;
(2)求直线BD的函数关系式;
(3)直线BD上是否存在点M,使△AMC为等腰三角形?若存在,求点M的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
(2006•浙江)在平面直角坐标系xOy中,已知直线l1经过点A(-2,0)和点B(0,manfen5.com 满分网),直线l2的函数表达式为y=-manfen5.com 满分网x+manfen5.com 满分网,l1与l2相交于点P.⊙C是一个动圆,圆心C在直线l1上运动,设圆心C的横坐标是a.过点C作CM⊥x轴,垂足是点M.
(1)填空:直线l1的函数表达式是______
查看答案
(2010•崇左)如图,平面直角坐标系中,直线AB与x轴,y轴分别交于A(3,0),B(0,manfen5.com 满分网)两点,点C为线段AB上的一动点,过点C作CD⊥x轴于点D.
(1)求直线AB的解析式;
(2)若S梯形OBCD=manfen5.com 满分网,求点C的坐标;
(3)在第一象限内是否存在点P,使得以P,O,B为顶点的三角形与△OBA相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2006•安徽)如图(1)是某公共汽车线路收支差额y(票价总收人减去运营成本)与乘客量x的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.
乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.
公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.
根据这两种意见,可以把图(1)分别改画成图(2)和图(3),
(1)说明图(1)中点A和点B的实际意义;
(2)你认为图(2)和图(3)两个图象中,反映乘客意见的是______,反映公交公司意见的是______
(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图(4)中画出符合这种办法的y与x的大致函数关系图象.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.