满分5 > 初中数学试题 >

(2006•天门)直线l的解析式为y=x+8,与x轴、y轴分别交于A,B两点,P...

(2006•天门)直线l的解析式为y=manfen5.com 满分网x+8,与x轴、y轴分别交于A,B两点,P是x轴上一点,以P为圆心的圆与直线l相切于B点.
(1)求点P的坐标及⊙P的半径R;
(2)若⊙P以每秒manfen5.com 满分网个单位沿x轴向左运动,同时⊙P的半径以每秒manfen5.com 满分网个单位变小,设⊙P的运动时间为t秒,且⊙P始终与直线l有交点,试求t的取值范围.

manfen5.com 满分网
(1)根据题意画出图形,利用切线的性质和勾股定理解答; (2)根据变化过程设出未知量,列不等式计算. 【解析】 (1)如图所示,设半径为r,由于圆与直线l相切于B点,所以根据勾股定理,OP2=r2-82,故OP=;根据射影定理,OB2=OA•OP,即82=•,解得r=10.OP==6.P点坐标为(6,0). (2)根据勾股定理,AB==, 根据题意得:(+6-)2-(10-t)2≤,整理得t2-10t≤0, 解得0秒≤t≤10秒.
复制答案
考点分析:
相关试题推荐
(2006•芜湖)如图,在平面直角坐标系中,以点M(0,manfen5.com 满分网)为圆心,以2manfen5.com 满分网长为半径作⊙M交x轴于A,B两点,交y轴于C,D两点,连接AM并延长交⊙M于P点,连接PC交x轴于E.
(1)求出CP所在直线的解析式;
(2)连接AC,请求△ACP的面积.

manfen5.com 满分网 查看答案
(2006•武汉)(北师大版)如图1,在平面直角坐标系中,以坐标原点O为圆心的⊙O的半径为manfen5.com 满分网-1,直线a:y=-x-manfen5.com 满分网与坐标轴分别交于A,C两点,点B的坐标为(4,1),⊙B与X轴相切于点M.
(1)求点A的坐标及∠CAO的度数;
(2)⊙B以每秒1个单位长度的速度沿x轴负方向平移,同时,直线a绕点A顺时针匀速旋转.当⊙B第一次与⊙O相切时,直线a也恰好与⊙B第一次相切.问:直线AC绕点A每秒旋转多少度;
(3)如图2,过A,O,C三点作⊙O1,点E是劣弧manfen5.com 满分网上一点,连接EC,EA.EO,当点E在劣弧manfen5.com 满分网上运动时(不与A,O两点重合),manfen5.com 满分网的值是否发生变化?如果不变,求其值;如果变化,说明理由manfen5.com 满分网manfen5.com 满分网
查看答案
(2006•湘西州)如图,直线OQ的函数解析式为y=x.
下表是直线a的函数关系中自变量x与函数y的部分对应值.
-1 3
 y 8 4 2 0
设直线a与x轴交点为B,与直线OQ交点为C,动点P(m,0)(0<m<3)在OB上移动,过点P作直线l与x轴垂直.
(1)根据表所提供的信息,请在直线OQ所在的平面直角坐标系中画出直线a的图象,并说明点(10,-10)不在直线a的图象上;
(2)求点C的坐标;
(3)设△OBC中位于直线l左侧部分的面积为S,写出S与m之间的函数关系式;
(4)试问是否存在点P,使过点P且垂直于x轴的直线l平分△OBC的面积?若有,求出点P坐标;若无,请说明理由.

manfen5.com 满分网 查看答案
(2006•徐州)如图,在平面直角坐标系中,直线y=-2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.
(1)求点C的坐标;
(2)求△OAC的面积;
(3)若P为线段OA(不含O、A两点)上的一个动点,过点P作PD∥AB交直线OC于点D,连接PC.设OP=t,△PDC的面积为S,求S与t之间的函数关系式;S是否存在最大值?如果存在,请求出来;如果不存在,请简要说明理由.

manfen5.com 满分网 查看答案
(2006•徐州)在平面直角坐标系中,已知矩形ABCD中,边AB=2,边AD=1,且AB、AD分别在x轴、y轴的正半轴上,点A与坐标原点重合.将矩形折叠,使点A落在边DC上,设点A′是点A落在边DC上的对应点.
(1)当矩形ABCD沿直线y=-manfen5.com 满分网x+b折叠时(如图1),求点A'的坐标和b的值;
manfen5.com 满分网
(2)当矩形ABCD沿直线y=kx+b折叠时,
①求点A′的坐标(用k表示);求出k和b之间的关系式;
②如果我们把折痕所在的直线与矩形的位置分为如图2、3、4所示的三种情形,请你分别写出每种情形时k的取值范围.(将答案直接填在每种情形下的横线上)k的取值范围是______;k的取值范围是______;k的取值范围是______
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.