(2006•广州)如图⊙O的半径为1,过点A(2,0)的直线切⊙O于点B,交y轴于点C.
(1)求线段AB的长;
(2)求以直线AC为图象的一次函数的解析式.
考点分析:
相关试题推荐
(2006•贵港)如图,已知直线l的函数表达式为y=-
x+8,且l与x轴,y轴分别交于A,B两点,动点Q从B点开始在线段BA上以每秒2个单位长度的速度向点A移动,同时动点P从A点开始在线段AO上以每秒1个单位长度的速度向点O移动,设点Q,P移动的时间为t秒
(1)点A的坐标为______,点B的坐标为______;
(2)当t=______时,△APQ与△AOB相似;
(3)(2)中当△APQ与△AOB相似时,线段PQ所在直线的函数表达式为______.
查看答案
(2006•杭州)已知,直线y=-
x+1与x轴,y轴分别交于点A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90度.且点P(1,a)为坐标系中的一个动点.
(1)求三角形ABC的面积S
△ABC;
(2)证明不论a取任何实数,三角形BOP的面积是一个常数;
(3)要使得△ABC和△ABP的面积相等,求实数a的值.
查看答案
(2006•河池)如图,在平面直角坐标系中,直线y=-
x+6交x轴于点A,交y轴于点B.点P,点Q同时从原点出发作匀速运动,点P沿x轴正方向运动,点Q沿OB→BA方向运动,并同时到达点A.点P运动的速度为1厘米/秒.
(1)求点Q运动的速度;
(2)当点Q运动到线段BA上时,设点P运动的时间为x(秒),△POQ的面积为y(平方厘米),那么用x的代数式表示AQ=______,并求y与x的函数关系式;
(3)若将(2)中所得函数的自变量x的取值范围扩大到任意实数后,其函数图象上是否存在点M,使得点M与该函数图象和x轴的两个交点所组成的三角形面积等于△AOB的面积?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案
(2006•河南)如图,在平面直角坐标系中,直线y=-
x+4分别交x轴、y轴于A、B两点.
(1)求两点的坐标;
(2)设是直线AB上一动点(点P与点A不重合),设⊙P始终和x轴相切,和直线AB相交于C、D两点(点C的横坐标小于点D的横坐标)设P点的横坐标为m,试用含有m的代数式表示点C的横坐标;
(3)在(2)的条件下,若点C在线段AB上,求m为何值时,△BOC为等腰三角形?
查看答案
(2006•淮安)已知一次函数y=
+m(O<m≤1)的图象为直线l,直线l绕原点O旋转180°后得直线l',△ABC三个顶点的坐标分别为A(-
,-1)、B(
,-1)、C(0,2).
(1)直线AC的解析式为______
查看答案