满分5 > 初中数学试题 >

(2006•崇左)如图,在平面直角坐标系中,⊙M与x轴交于A,B两点,AC是⊙M...

(2006•崇左)如图,在平面直角坐标系中,⊙M与x轴交于A,B两点,AC是⊙M的直径,过点C的直线交x轴于点D,连接BC,已知点M的坐标为manfen5.com 满分网,直线CD的函数解析式为y=-manfen5.com 满分网x+5manfen5.com 满分网
(1)求点D的坐标和BC的长;
(2)求点C的坐标和⊙M的半径;
(3)求证:CD是⊙M的切线.

manfen5.com 满分网
(1)因为点M的坐标为,直线CD的函数解析式为y=-x+5,D在x轴上,可求出OM=,D(5,0),又因过圆心M的直径⊥AB,AC是直径,利用垂径定理可得OA=OB,AM=MC,∠ABC=90°,利用三角形的中位线可得OM=BC,BC=2; (2)因为BC=2,所以可设C(x,2),利用直线CD的函数解析式为y=-x+5.可得到y=-x+5=2,即求出C(3,2),利用勾股定理可得AC==,即⊙M的半径为2; (3)求出BD=5-3=2,BC=,CD==4,AC=4,AD=8,CD=4,,可得△ACD∽△CBD, 所以∠CBD=∠ACD=90°,CD是⊙M的切线. (1)【解析】 ∵点M的坐标为,直线CD的函数解析式为y=-x+5,D在x轴上, ∴OM=,D(5,0); ∵过圆心M的直径⊥AB,AC是直径, ∴OA=OB,AM=MC,∠ABC=90°, ∴OM=BC, ∴BC=2. (2)【解析】 ∵BC=2, ∴设C(x,2); ∵直线CD的函数解析式为y=-x+5, ∴y=-x+5=2, ∴x=3,即C(3,2), ∵CB⊥x轴,OB=3, ∴AO=3,AB=6,AC==, 即⊙M的半径为2. (3)证明:∵BD=5-3=2,BC=,CD==4, AC=4,AD=8,CD=4, ∴, ∴△ACD∽△CBD, ∴∠CBD=∠ACD=90°; ∵AC是直径, ∴CD是⊙M的切线.
复制答案
考点分析:
相关试题推荐
(2006•大连)早晨小欣与妈妈同时从家里出发,步行与骑自行车到方向相反的两地上学与上班,图是他们离家的路程y(米)与时间x(分)的函数图象.妈妈骑车走了10分时接到小欣的电话,即以原速骑车前往小欣学校,并与小欣同时到达学校.已知小欣步行速度为每分50米,求小欣家与学校距离及小欣早晨上学需要的时间.

manfen5.com 满分网 查看答案
(2006•广州)如图⊙O的半径为1,过点A(2,0)的直线切⊙O于点B,交y轴于点C.
(1)求线段AB的长;
(2)求以直线AC为图象的一次函数的解析式.

manfen5.com 满分网 查看答案
(2006•贵港)如图,已知直线l的函数表达式为y=-manfen5.com 满分网x+8,且l与x轴,y轴分别交于A,B两点,动点Q从B点开始在线段BA上以每秒2个单位长度的速度向点A移动,同时动点P从A点开始在线段AO上以每秒1个单位长度的速度向点O移动,设点Q,P移动的时间为t秒
(1)点A的坐标为______,点B的坐标为______
(2)当t=______时,△APQ与△AOB相似;
(3)(2)中当△APQ与△AOB相似时,线段PQ所在直线的函数表达式为______

manfen5.com 满分网 查看答案
(2006•杭州)已知,直线y=-manfen5.com 满分网x+1与x轴,y轴分别交于点A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90度.且点P(1,a)为坐标系中的一个动点.
(1)求三角形ABC的面积S△ABC
(2)证明不论a取任何实数,三角形BOP的面积是一个常数;
(3)要使得△ABC和△ABP的面积相等,求实数a的值.

manfen5.com 满分网 查看答案
(2006•河池)如图,在平面直角坐标系中,直线y=-manfen5.com 满分网x+6交x轴于点A,交y轴于点B.点P,点Q同时从原点出发作匀速运动,点P沿x轴正方向运动,点Q沿OB→BA方向运动,并同时到达点A.点P运动的速度为1厘米/秒.
(1)求点Q运动的速度;
(2)当点Q运动到线段BA上时,设点P运动的时间为x(秒),△POQ的面积为y(平方厘米),那么用x的代数式表示AQ=______,并求y与x的函数关系式;
(3)若将(2)中所得函数的自变量x的取值范围扩大到任意实数后,其函数图象上是否存在点M,使得点M与该函数图象和x轴的两个交点所组成的三角形面积等于△AOB的面积?若存在,求出点M的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.