满分5 > 初中数学试题 >

(2006•湛江)已知抛物线y=ax2+bx+2与x轴相交于点A(x1,0),B...

(2006•湛江)已知抛物线y=ax2+bx+2与x轴相交于点A(x1,0),B(x2,0)(x1<x2),且x1,x2是方程x2-2x-3=0的两个实数根,点C为抛物线与y轴的交点.
(1)求a,b的值;
(2)分别求出直线AC和BC的解析式;
(3)若动直线y=m(0<m<2)与线段AC,BC分别相交于D,E两点,则在x轴上是否存在点P,使得△DEP为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

manfen5.com 满分网
(1)求出方程两根代入抛物线解析式即可; (2)设所求的解析式为y=kx+b,用待定系数法求解; (3)若△DEP为等腰直角三角形,应分情况进行讨论,需注意应符合两个条件:等腰,有直角. 【解析】 (1)由x2-2x-3=0,得x1=-1,x2=3. ∴A(-1,0),B(3,0),(1分) 把A,B两点的坐标分别代入 y=ax2+bx+2联立求解, 得a=-,b=.(2分) (2)由(1)可得y=-x2+x+2, ∵当x=0时,y=2, ∴C(0,2). 设AC:y=kx+b,把A,C两点坐标分别代入y=kx+b,联立求得k=2,b=2. ∴直线AC的解析式为y=2x+2.(3分) 同理可求得直线BC的解析式是y=-x+2.(4分) (3)假设存在满足条件的点P,并设直线y=m与y轴的交点为F(0,m). ①当DE为腰时,分别过点D,E作DP1⊥x轴于P1,作EP2⊥x轴于P2,如图, 则△P1DE和△P2ED都是等腰直角三角形,DE=DP1=FO=EP2=m,AB=x2-x1=4. ∵DE∥AB, ∴△CDE∽△CAB, ∴,即. 解得m=.(6分) ∴点D的纵坐标是, ∵点D在直线AC上, ∴2x+2=,解得x=-, ∴D(-,). ∴P1(-,0),同理可求P2(1,0).(8分) ②当DE为底边时, 过DE的中点G作GP3⊥x轴于点P3,如图, 则DG=EG=GP3=m, 由△CDE∽△CAB, 得,即, 解得m=1.(9分) 同1方法.求得D(-,1),E(,1), ∴DG=EG=GP3=1 ∴OP3=FG=FE-EG=, ∴P3(,0).(11分) 结合图形可知,P3D2=P3E2=2,ED2=4, ∴ED2=P3D2+P3E2, ∴△DEP3是Rt△, ∴P3(,0)也满足条件. 综上所述,满足条件的点P共有3个,即P1(-,0),P2(1,0),P3(,0).(12分)
复制答案
考点分析:
相关试题推荐
(2006•临汾)某公司试销一种成本为30元/件的新产品,按规定试销时的销售单价不低于成本单价,又不高于80元/件,试销中每天的销售量y(件)与销售单价x(元/件)满足下表中的函数关系.
x(元/件)3540455055
y(件)550500450400350
(1)试求y与x之间的函数表达式;
(2)设公司试销该产品每天获得的毛利润为S(元),求S与x之间的函数表达式(毛利润=销售总价-成本总价);
(3)当销售单价定为多少时,该公司试销这种产品每天获得的毛利润最大?最大毛利润是多少?此时每天的销售量是多少?
查看答案
(2006•绵阳)某产品每件的成本是120元,为了解市场规律,试销阶段按两种方法进行销售,结果如下:
方案甲:保持每件150元的售价不变,此时日销售量为50件;
x (元)130150160
y (件)705040
方案乙:不断地调整售价,此时发现日销售量y(件)是售价x(元)的一次函数,且前三天的销售情况如下表:
(1)如果方案乙中的第四天、第五天售价均为180元,那么前五天中,哪种方案的销售总利润大?
(2)分析两种方案,为获得最大日销售利润,每件产品的售价应写为多少元此时,最大日销售利润S是多少?(注:销售利润=销售额-成本额,销售额=售价×销售量).
查看答案
(2006•茂名)已知:半径为1的⊙O1与x轴交于A、B两点,圆心O1的坐标为(2,0),二次函数y=-x2+bx+c的图象经过A、B两点,其顶点为F.
(1)求b、c的值及二次函数顶点F的坐标;
(2)写出将二次函数y=-x2+bx+c的图象向下平移1个单位再向左平移2个单位的图象的函数表达式;
(3)经过原点O的直线l与⊙O相切,求直线l的函数表达式.

manfen5.com 满分网 查看答案
(2006•北京)在平面直角坐标系xOy中,直线y=-x绕点O顺时针旋转90°得到直线l,直线l与反比例函数manfen5.com 满分网的图象的一个交点为A(a,3),试确定反比例函数的解析式.
查看答案
(2006•长春)如图,在平面直角坐标系中,两个函数y=x,y=-manfen5.com 满分网x+6的图象交于点A.动点P从点O开始沿OA方向以每秒1个单位的速度运动,作PQ∥x轴交直线BC于点Q,以PQ为一边向下作正方形PQMN,设它与△OAB重叠部分的面积为S.
(1)求点A的坐标.
(2)试求出点P在线段OA上运动时,S与运动时间t(秒)的关系式.
(3)在(2)的条件下,S是否有最大值若有,求出t为何值时,S有最大值,并求出最大值;若没有,请说明理由.
(4)若点P经过点A后继续按原方向、原速度运动,当正方形PQMN与△OAB重叠部分面积最大时,运动时间t满足的条件是______

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.