满分5 > 初中数学试题 >

(2006•资阳)如图,已知抛物线l1:y=x2-4的图象与x轴相交于A、C两点...

(2006•资阳)如图,已知抛物线l1:y=x2-4的图象与x轴相交于A、C两点,B是抛物线l1上的动点(B不与A、C重合),抛物线l2与l1关于x轴对称,以AC为对角线的平行四边形ABCD的第四个顶点为D.
(1)求l2的解析式;
(2)求证:点D一定在l2上;
(3)▱ABCD能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由.
注:计算结果不取近似值.

manfen5.com 满分网
(1)根据l1的解析式可求l1与x轴的交点为A(-2,0),C(2,0),顶点坐标是(0,-4),l2与l1关于x轴对称,实际上是l2与l1的顶点关于x轴对称,即l2的顶点为(0,4),设顶点式,可求抛物线l2的解析式; (2)平行四边形是中心对称图形,A、C关于原点对称,则B、D也关于原点对称,设点B(m,n),则点D(-m,-n),由于B(m,n)点是y=x2-4上任意一点,则n=m2-4,∴-n=-(m2-4)=-m2+4=-(-m)2+4,可知点D(-m,-n)在l2y=-x2+4的图象上; (3)构造∠ABC=90°是关键,连接OB,只要证明OB=OC即可,为求OB长,过点B作BH⊥x轴于H,用B的坐标为(x,x2-4),可求OB,用OB=OC求x,再计算面积. 【解析】 (1)设l2的解析式为y=ax2+bx+c(a≠0), ∵l1与x轴的交点为A(-2,0),C(2,0),顶点坐标是(0,-4),l2与l1关于x轴对称, ∴l2过A(-2,0),C(2,0),顶点坐标是(0,4),(1分) ∴(2分) ∴a=-1,b=0,c=4, 即l2的解析式为y=-x2+4.(3分) (还可利用顶点式、对称性关系等方法解答) (2)设点B(m,n)为l1:y=x2-4上任意一点,则n=m2-4,(*) ∵四边形ABCD′是平行四边形,点A、C关于原点O对称, ∴B、D′关于原点O对称,(4分) ∴点D′的坐标为D′(-m,-n). 由式方程式可知,-n=-(m2-4)=-(-m)2+4, 即点D′的坐标满足y=-x2+4,又D与D′关于y轴对称, ∴点D在l2上.(5分) (3)▱ABCD能为矩形.(6分) 过点B作BH⊥x轴于H,由点B在l1:y=x2-4上,可设点B的坐标为(x,x2-4), 则OH=|x|,BH=|x2-4|. 易知,当且仅当BO=AO=2时,▱ABCD为矩形. 在Rt△OBH中,由勾股定理得,|x|2+|x2-4|2=22, (x2-4)(x2-3)=0, ∴x=±2(舍去)、x=±.(7分) 所以,当点B坐标为B(,-1)或B′(-,-1)时,▱ABCD为矩形, 此时,点D的坐标分别是D(-,1)、D′(,1). 因此,符合条件的矩形有且只有2个,即矩形ABCD和矩形AB′CD′.(8分) 设直线AB与y轴交于E,显然,△AOE∽△AHB, ∴=, ∴. ∴EO=4-2.(9分) 由该图形的对称性知矩形ABCD与矩形AB′CD′重合部分是菱形,其面积为 S=2S△ACE=2××AC×EO=2××4×(4-2)=16-8.(10分) (还可求出直线AB与y轴交点E的坐标解答)
复制答案
考点分析:
相关试题推荐
(2006•自贡)已知抛物线y=mx2-(m-5)x-5(m>0)与x轴交于两点,A(x1,0),B(x2,0)(x1<x2),与y轴交于点C,且AB=6.
(1)求抛物线与直线BC的解析式;
(2)在所给出的直角坐标系中作出抛物线的图象.

manfen5.com 满分网 查看答案
(2006•自贡)如图,在直角三角形PMN中,∠MPN=90°,PM=PN=6 cm,矩形ABCD的长和宽分别为6 cm和3 cm,C点和P点重合,BC和PN在一条直线上.令Rt△PMN不动,矩形ABCD向右以每秒1 cm的速度移动,直到C点与N点重合为止.设移动x秒后,矩形ABCD与△PMN重合部分的面积为y cm2
(1)求y与x之间的函数关系式;
(2)求重合部分面积的最大值.

manfen5.com 满分网 查看答案
(2007•大连)已知抛物线y=ax2+bx+c经过P(manfen5.com 满分网,3),E(manfen5.com 满分网,0)及原点O(0,0).
(1)求抛物线的解析式;
(2)过P点作平行于x轴的直线PC交y轴于C点,在抛物线对称轴右侧且位于直线PC下方的抛物线上,任取一点Q,过点Q作直线QA平行于y轴交x轴于A点,交直线PC于B点,直线QA与直线PC及两坐标轴围成矩形OABC(如图).是否存在点Q,使得△OPC与△PQB相似?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)如果符合(2)中的Q点在x轴的上方,连接OQ,矩形OABC内的四个三角形△OPC,△PQB,△OQP,△OQA之间存在怎样的关系,为什么?

manfen5.com 满分网 查看答案
(2007•开封)已知抛物线y=x2-2x+m与x轴交于点A(x1,0)、B(x2,0)(x2>x1),
(1)若点P(-1,2)在抛物线y=x2-2x+m上,求m的值;
(2)若抛物线y=ax2+bx+m与抛物线y=x2-2x+m关于y轴对称,点Q1(-2,q1)、Q2(-3,q2)都在抛物线y=ax2+bx+m上,则q1、q2的大小关系是______
(请将结论写在横线上,不要写解答过程);(友情提示:结论要填在答题卡相应的位置上)
(3)设抛物线y=x2-2x+m的顶点为M,若△AMB是直角三角形,求m的值.
查看答案
manfen5.com 满分网(2007•玉溪)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.
(1)求m的值及这个二次函数的关系式;
(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四形?若存在,请求出此时P点的坐标;若不存在,请说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.