满分5 > 初中数学试题 >

(2006•永州)(附加题)已知抛物线y=x2+kx+b经过点P(2,-3),Q...

(2006•永州)(附加题)已知抛物线y=x2+kx+b经过点P(2,-3),Q(-1,0).
(1)求抛物线的解析式;
(2)设抛物线顶点为N,与y轴交点为A.求sin∠AON的值;
(3)设抛物线与x轴的另一个交点为M,求四边形OANM的面积.

manfen5.com 满分网
(1)抛物线经过点P、Q,利用待定系数法就可以求出函数的解析式. (2)抛物线的顶点,根据顶点的公式,可以直接求出,过N作y轴的垂线NF,在直角△ONF中,根据三角函数的定义就可以求出. (3)在抛物线的解析式中,令y=0,解得M的横坐标,则已知M的坐标.根据S四边形=S△OAN+S△ONM就可以得到. 【解析】 (1)解方程组, 得, ∴y=x2-2x-3.(3分) (2)作NH⊥y轴于H. 顶点N(1,-4),NH=1,ON=,sin∠AON==.(6分) (3)在y=x2-2x-3中,令x=0得y=-3, ∴A(0,-3), 令y=0得x=-1或3, ∴M(3,0).(8分) S四边形=S△OAN+S△ONM=+6=7.5(面积单位).(10分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网(2006•岳阳)如图抛物线y=manfen5.com 满分网,x轴于A、B两点,交y轴于点C,顶点为D.
(1)求A、B、C的坐标;
(2)把△ABC绕AB的中点M旋转180°,得到四边形AEBC:
①求E点坐标;
②试判断四边形AEBC的形状,并说明理由;
(3)试探索:在直线BC上是否存在一点P,使得△PAD的周长最小?若存在,请求出P点的坐标;若不存在,请说明理由.
查看答案
(2006•双柏县)如图,边长为4的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接OE.
(1)当CD=1时,求点E的坐标;
(2)如果设CD=t,梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这个最大值及此时t的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2006•昆明)如图,在直角坐标系中,O为坐标原点,平行四边形OABC的边OA在x轴上,∠B=60°,OA=6,OC=4,D是BC的中点,延长AD交OC的延长线于点E.
(1)画出△ECD关于边CD所在直线为对称轴的对称图形△E1CD,并求出点E1的坐标;
(2)求经过C、E1、B三点的抛物线的函数表达式;
(3)请探求经过C、E1、B三点的抛物线上是否存在点P,使以点P、B、C为顶点的三角形与△ECD相似?若存在这样的点P,请求出点P的坐标;若不存在这样的点P,请说明理由.

manfen5.com 满分网 查看答案
(2006•湛江)已知抛物线y=ax2+bx+2与x轴相交于点A(x1,0),B(x2,0)(x1<x2),且x1,x2是方程x2-2x-3=0的两个实数根,点C为抛物线与y轴的交点.
(1)求a,b的值;
(2)分别求出直线AC和BC的解析式;
(3)若动直线y=m(0<m<2)与线段AC,BC分别相交于D,E两点,则在x轴上是否存在点P,使得△DEP为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
(2006•张家界)在平面直角坐标系内有两点A(-2,0),B(manfen5.com 满分网,0),CB所在直线为y=2x+b,
(1)求b与C的坐标;
(2)连接AC,求证:△AOC∽△COB;
(3)求过A,B,C三点且对称轴平行于y轴的抛物线解析式;
(4)在抛物线上是否存在一点P(不与C重合),使得S△ABP=S△ABC?若存在,请求出P点坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.