满分5 > 初中数学试题 >

(2006•厦门)已知抛物线y=ax2+b(a>0,b>0),函数y=b|x| ...

(2006•厦门)已知抛物线y=ax2+b(a>0,b>0),函数y=b|x|
问:(1)如图,当抛物线y=ax2+b与函数y=b|x|相切于AB两点时,a、b满足的关系;
(2)满足(1)题条件,则三角形AOB的面积为多少?
(3)满足条件(2),则三角形AOB的内心与抛物线的最低点间的距离为多少?
(4)若不等式ax2+b>b|x|在实数范围内恒成立,则a、b满足什么关系?

manfen5.com 满分网
(1)联立直线与抛物线的解析式可得出一个关于x的方程,已知两函数只有一个交点,因此方程的△=0.由此可求出a、b的关系式. (2)将a、b的关系式代入两函数中即可求出A、B的坐标.进而可求出三角形AOB的面积. (3)可通过构建相似三角形来求解.设三角形AOB的内心为M,过M作OA的垂线,设垂足为N,设AB与y轴交于H,可设MH=MN=x,根据相似三角形OMN和AMH求出x的值,即可求出OM的距离,根据抛物线的解析式可求出抛物线顶点的坐标,即可得出抛物线最低点到原点的距离.据此可得出所求. (4)将b|x|移到方程左边,由于抛物线的开口向上即a>0,如果ax2-b|x|+b>0恒大于0,那么抛物线y=ax2-b|x|+b与x轴无交点即ax2-b|x|+b=0的△<0,由此可求出a、b的关系. 【解析】 (1)当x>0时,直线的解析式为y=bx, 联立两函数的解析式可得: ax2+b=bx,即ax2-bx+b=0, 由于两函数的交点只有一个, 因此△=b2-4ab=0,b=4a. 同理可求得当x<0时,b=4a. 因此a、b需满足的条件有b=4a. (2)由(1)可知:y=ax2+4a,y=4a|x|, 因此A(-2,8a),B(2,8a) 因此S△AOB=×4×8a=16a. (3)设三角形AOB的内心为M,过M作MN⊥OA于N, 设AB与y轴的交点为H,设MN=MH=x, 根据△ONM∽△OHA,则有: , 即 ∴x=, ∴OM=8a-x=4a+ 易知抛物线的顶点P坐标为(0,4a). 因此三角形AOB的内心与抛物线的最低点间的距离MP= (4)根据题意:ax2+b>b|x|,即ax2-b|x|+b>0①, ∵a>0,b>0 如果要使①恒成立,b2-4ab<0, 因此0<b<4a.
复制答案
考点分析:
相关试题推荐
(2006•厦门)已知P(m,a)是抛物线y=ax2上的点,且点P在第一象限.
(1)求m的值
(2)直线y=kx+b过点P,交x轴的正半轴于点A,交抛物线于另一点M.
①当b=2a时,∠OPA=90°是否成立?如果成立,请证明;如果不成立,举出一个反例说明;
②当b=4时,记△MOA的面积为S,求manfen5.com 满分网的最大值.
查看答案
(2006•湘潭)已知:如图,抛物线y=-manfen5.com 满分网的图象与x轴分别交于A,B两点,与y轴交于C点,⊙M经过原点O及点A、C,点D是劣弧manfen5.com 满分网上一动点(D点与A、O不重合).
(1)求抛物线的顶点E的坐标;
(2)求⊙M的面积;
(3)连CD交AO于点F,延长CD至G,使FG=2,试探究,当点D运动到何处时,直线GA与⊙M相切,并请说明理由.

manfen5.com 满分网 查看答案
(2006•襄阳)已知:AC是⊙O的直径,点A、B、C、O在⊙O1上,OA=2.建立如图所示的直角坐标系.∠ACO=∠ACB=60度.
(1)求点B关于x轴对称的点D的坐标;
(2)求经过三点A、B、O的二次函数的解析式;
(3)该抛物线上是否存在点P,使四边形PABO为梯形?若存在,请求出P点的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2006•襄阳)在如图所示的直角坐标系中,四边形OABC是边长为2的正方形,D为x轴上一点,连接BD交y轴于E点,且tan∠CBE=manfen5.com 满分网.抛物线y=ax2+bx+c(a≠0)过A、C、D三点,顶点为F.
(1)求D点坐标;
(2)求抛物线的解析式及顶点F的坐标;
(3)在直线DB上是否存在点P,使四边形PFDO为梯形?若存在,求出其坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2006•孝感)如图,已知二次函数y=manfen5.com 满分网x2+bx+c的图象与x轴只有一个公共点M,与y轴的交点为A,过点A的直线y=x+c与x轴交于点N,与这个二次函数的图象交于点B.
(1)求点A、B的坐标(用含b、c的式子表示);
(2)当S△BMN=4S△AMN时,求二次函数的解析式;
(3)在(2)的条件下,设点P为x轴上的一个动点,那么是否存在这样的点P,使得以P、A、M为顶点的三角形为等腰三角形?若存在,请写出符合条件的所有点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.