(2006•青岛)如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点.
如图②,若整个△EFG从图①的位置出发,以1cm/s的速度沿射线AB方向平移,在△EFG平移的同时,点P从△EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm
2)(不考虑点P与G、F重合的情况).
(1)当x为何值时,OP∥AC;
(2)求y与x之间的函数关系式,并确定自变量x的取值范围;
(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由.(参考数据:114
2=12996,115
2=13225,116
2=13456或4.4
2=19.36,4.5
2=20.25,4.6
2=21.16)
考点分析:
相关试题推荐
(2006•曲靖)如图,已知抛物线l
1:y=x
2-4的图象与x有交于A、C两点,
(1)若抛物线l
2与l
1关于x轴对称,求l
2的解析式;
(2)若点B是抛物线l
1上的一动点(B不与A、C重合),以AC为对角线,A、B、C三点为顶点的平行四边形的第四个顶点定为D,求证:点D在l
2上;
(3)探索:当点B分别位于l
1在x轴上、下两部分的图象上时,平行四边形ABCD的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,并求出它的面积;若不存在,请说明理由.
查看答案
(2006•衢州)在等腰梯形ABCD中,已知AB=6,BC=
,∠A=45°,以AB所在直线为x轴,A为坐标原点建立直角坐标系,将等腰梯形ABCD饶A点按逆时针方向旋转90°得到等腰梯形OEFG(O﹑E﹑F﹑G分别是A﹑B﹑C﹑D旋转后的对应点)(图1)
(1)写出C﹑F两点的坐标;
(2)等腰梯形ABCD沿x轴的负半轴平行移动,设移动后的OA=x(图2),等腰梯形ABCD与等腰梯形OEFG重叠部分的面积为y,当点D移动到等腰梯形OEFG的内部时,求y与x之间的关系式;
(3)线段DC上是否存在点P,使EFP为等腰三角形?若存在,求出点P坐标;若不存在,请说明理由.
查看答案
(2006•泉州)一条隧道的截面如图所示,它的上部是一个以AD为直径的半圆O,下部是一个矩形ABCD.
(1)当AD=4米时,求隧道截面上部半圆O的面积;
(2)已知矩形ABCD相邻两边之和为8米,半圆O的半径为r米.
①求隧道截面的面积S(米
2)关于半径r(米)的函数关系式(不要求写出r的取值范围);
②若2米≤CD≤3米,利用函数图象求隧道截面的面积S的最大值(π取3.14,结果精确到0.1米).
查看答案
(2006•日照)如图,已知抛物线与x轴交于A(m,0)、B(n,0)两点,与y轴交于点C(0,3),点P是抛物线的顶点,若m-n=-2,m•n=3.
(1)求抛物线的表达式及P点的坐标;
(2)求△ACP的面积S
△ACP.
查看答案
(2006•山西)如图所示,在平面直角坐标系中有点A(-1,0),点B(4,0),以AB为直径的半圆交y轴正半轴于点C.
(1)求点C的坐标;
(2)求过A,B,C三点的抛物线的解析式;
(3)在(2)的条件下,若在抛物线上有一点D,使四边形BOCD为直角梯形,求直线BD的解析式;
(4)设点M是抛物线上任意一点,过点M作MN⊥y轴,交y轴于点N.若在线段AB上有且只有一点P,使∠MPN为直角,求点M的坐标.
查看答案