满分5 > 初中数学试题 >

(2006•娄底)如图:在直角坐标系中放入一边长OC为6的矩形纸片ABCO,将纸...

(2006•娄底)如图:在直角坐标系中放入一边长OC为6的矩形纸片ABCO,将纸翻折后,使点B恰好落在x轴上,记为B',折痕为CE,已知tan∠OB′C=manfen5.com 满分网
(1)求出B′点的坐标;
(2)求折痕CE所在直线的解析式;
(3)作B′G∥AB交CE于G,已知抛物线y=manfen5.com 满分网x2-manfen5.com 满分网通过G点,以O为圆心OG的长为半径的圆与抛物线是否还有除G点以外的交点?若有,请找出这个交点坐标.

manfen5.com 满分网
(1)在直角三角形COB′中,根据OC的长和∠OB′C的正切值即可求出OB′的长,也就求了B′的坐标; (2)本题的关键是求出E点的坐标.在直角三角形COB′中,根据勾股定理可求出B′C的长,根据折叠的性质:B′C=BC也就得出了BC、OA的长.即可求出AB′的长,在直角三角形AB′E中,设AE=x,那么B′E=BE=OC-AE=6-x,因此可根据勾股定理求出AE的长,即可得出E点坐标,然后用待定系数法即可求出直线CE的解析式; (3)由于圆心在y轴上,而题中给出的抛物线的对称轴也是y轴,根据抛物线和圆的对称性可知:G点关于y轴的对称点必在抛物线上,因此可先根据B′的坐标和直线CE的解析式求出G点的坐标,进而可求出G′的坐标. 【解析】 (1)在Rt△B′OC中,tan∠OB'C=,OC=6, ∴OB′=8, ∴点B′(8,0); (2)由已知得:△CBE≌△CB′E, ∴BE=B′E,CB′=CB=OA, CB′==10. 设AE=n,则EB′=EB=6-n,AB′=AO-OB′=10-8=2. ∴n2+22=(6-n)2, 得n=. ∴E(10,),C(0,6). 设直线CE的解析式y=kx+b, 根据题意得 解得: CE所在直线的解析式:y=-x+6; (3)设G(8,a), ∵点G在直线CE上, ∴a=-×8+6=. ∴G(8,). ∵以O点为圆心,以OG为半径的圆的对称轴是y轴, 抛物线y=x2-的对称轴也是y轴. ∴除交点G外,另有交点H,H是G点关于y轴的对称点. 其坐标为H(-8,).
复制答案
考点分析:
相关试题推荐
(2006•泸州)如图,已知二次函数y=(1-m)x2+4x-3的图象与x轴交于点A和B,与y轴交于点C.
(1)求点C的坐标;
(2)若点A的坐标为(1,0),求二次函数的解析式;
(3)在(2)的条件下,在y轴上是否存在点P,使以P、O、B为顶点的三角形与△AOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2006•旅顺口区)已知抛物线y=x2-4x+1.将此抛物线沿x轴方向向左平移4个单位长度,得到一条新的抛物线.
(1)求平移后的抛物线解析式;
(2)若直线y=m与这两条抛物线有且只有四个交点,求实数m的取值范围;
(3)若将已知的抛物线解析式改为y=ax2+bx+c(a>0,b<0),并将此抛物线沿x轴方向向左平移-manfen5.com 满分网个单位长度,试探索问题(2).

manfen5.com 满分网 查看答案
(2006•旅顺口区)已知边长为4的正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.

manfen5.com 满分网 查看答案
(2006•眉山)如图:正方形ABCO的边长为3,过A(0,3)点作直线AD交x轴于D点,且D点的坐标为(4,0),线段AD上有一动点,以每秒一个单位长度的速度移动.
(1)求直线AD的解析式;
(2)若动点从A点开始沿AD方向运动2.5秒时到达的位置为点P,求经过B、O、P三点的抛物线的解析式;
(3)若动点从A点开始沿AD方向运动到达的位置为点P1,过P1作P1E⊥x轴,垂足为E,设四边形BCEP1的面积为S,请问S是否有最大值?若有,请求出P点坐标和S的最大值;若没有,请说明理由.

manfen5.com 满分网 查看答案
(2006•梅州)如图,点A在抛物线y=manfen5.com 满分网x2上,过点A作与x轴平行的直线交抛物线于点B,延长AO,BO分别与抛物线y=-manfen5.com 满分网x2相交于点C,D,连接AD,BC,设点A的横坐标为m,且m>0.
(1)当m=1时,求点A,B,D的坐标;
(2)当m为何值时,四边形ABCD的两条对角线互相垂直;
(3)猜想线段AB与CD之间的数量关系,并证明你的结论.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.