满分5 > 初中数学试题 >

(2006•临安市)如图,△OAB是边长为2+的等边三角形,其中O是坐标原点,顶...

(2006•临安市)如图,△OAB是边长为2+manfen5.com 满分网的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.
(1)当A′E∥x轴时,求点A′和E的坐标;
(2)当A′E∥x轴,且抛物线y=-manfen5.com 满分网x2+bx+c经过点A′和E时,求抛物线与x轴的交点的坐标;
(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.

manfen5.com 满分网
(1)当A′E∥x轴时,△A′EO是直角三角形,可根据∠A′OE的度数用O′A表示出OE和A′E,由于A′E=AE,且A′E+OE=OA=2+,由此可求出OA′的长,也就能求出A′E的长.据此可求出A′和E的坐标; (2)将A′,E点的坐标代入抛物线中,即可求出其解析式.进而可求出抛物线与x轴的交点坐标; (3)根据折叠的性质可知:∠FA′E=∠A,因此∠FA′E不可能为直角,因此要使△A′EF成为直角三角形只有两种可能: ①∠A′EF=90°,根据折叠的性质,∠A′EF=∠AEF=90°,此时A′与O重合,与题意不符,因此此种情况不成立. ②∠A′FE=90°,同①,可得出此种情况也不成立. 因此A′不与O、B重合的情况下,△A′EF不可能成为直角三角形. 【解析】 (1)由已知可得∠A′OE=60°,A′E=AE, 由A′E∥x轴,得△OA′E是直角三角形, 设A′的坐标为(0,b), AE=A′E=b,OE=2b,b+2b=2+, 所以b=1,A′、E的坐标分别是(0,1)与(,1). (2)因为A′、E在抛物线上, 所以, 所以, 函数关系式为y=-x2+x+1, 由-x2+x+1=0, 得x1=-,x2=2, 与x轴的两个交点坐标分别是(,0)与(,0). (3)不可能使△A′EF成为直角三角形. ∵∠FA′E=∠FAE=60°, 若△A′EF成为直角三角形,只能是∠A′EF=90°或∠A′FE=90° 若∠A′EF=90°,利用对称性,则∠AEF=90°, A、E、A三点共线,O与A重合,与已知矛盾; 同理若∠A′FE=90°也不可能, 所以不能使△A′EF成为直角三角形.
复制答案
考点分析:
相关试题推荐
(2006•临汾)如图,在等腰梯形ABCD中,AB∥DC,∠A=45°,AB=10cm,CD=4cm.等腰直角三角形PMN的斜边MN=10cm,A点与N点重合,MN和AB在一条直线上,设等腰梯形ABCD不动,等腰直角三角形PMN沿AB所在直线以1cm/s的速度向右移动,直到点N与点B重合为止.
(1)等腰直角三角形PMN在整个移动过程中与等腰梯形ABCD重叠部分的形状由______形变化为______形;
(2)设当等腰直角三角形PMN移动x(s)时,等腰直角三角形PMN与等腰梯形ABCD重叠部分的面积为y(cm2),求y与x之间的函数关系式;
(3)当x=4(s)时,求等腰直角三角形PMN与等腰梯形ABCD重叠部分的面积.manfen5.com 满分网
查看答案
(2006•临汾)如图,直线y=-x+3与x轴,y轴分别相交于点B,点C,经过B,C两点的抛物线y=ax2+bx+c与x轴的另一交点为A,顶点为P,且对称轴是直线x=2.
(1)求A点的坐标;
(2)求该抛物线的函数表达式;
(3)连接AC.请问在x轴上是否存在点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2006•临沂)如图,在矩形ABCD中,AB=3cm,BC=4cm.设P,Q分别为BD,BC上的动点,在点P自点D沿DB方向作匀速移动的同时,点Q自点B沿BC方向向点C作匀速移动,移动的速度均为1cm/s,设P,Q移动的时间为t(0<t≤4).
(1)写出△PBQ的面积S(cm2)与时间t(s)之间的函数表达式,当t为何值时,S有最大值,最大值是多少?
(2)当t为何值时,△PBQ为等腰三角形?
(3)△PBQ能否成为等边三角形?若能,求t的值;若不能,说明理由.

manfen5.com 满分网 查看答案
(2006•临沂)如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.
(1)求此抛物线的解析式;
(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.
①求证:PB=PS;
②判断△SBR的形状;
③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似?若存在,请找出M点的位置;若不存在,请说明理由.
manfen5.com 满分网
查看答案
(2006•柳州)如图,抛物线y=-x2+2mx+m+2的图象与x轴交于A(-1,0),B两点,在x轴上方且平行于x轴的直线EF与抛物线交于E,F两点,E在F的左侧,过E,F分别作x轴的垂线,垂足是M,N.
(1)求m的值及抛物线的顶点坐标;
(2)设BN=t,矩形EMNF的周长为C,求C与t的函数表达式;
(3)当矩形EMNF的周长为10时,将△ENM沿EN翻折,点M落在坐标平面内的点记为M',试判断点M'是否在抛物线上?并说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.