满分5 > 初中数学试题 >

(2006•辽宁)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0...

(2006•辽宁)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

manfen5.com 满分网
(1)已知了抛物线上三点的坐标,即可用待定系数法求出抛物线的解析式. (2)根据(1)的解析式按要求求解即可. (3)由于四边形ABDE不是规则的四边形,因此可将其分割成几个规则图形来求解. 方法不唯一:①可连接OD,将梯形的面积分割成三个三角形的面积进行求解. ②可过D作x轴的垂线,将梯形的面积分割成两个三角形和一个直角梯形进行求解. 【解析】 (1)∵抛物线y=ax2+bx+c经过A(-2,0),B(0,-4),C(2,-4)三点 ∴ 解得. ∴抛物线解析式:y=x2-x-4. (2)y=x2-x-4=(x-1)2- ∴顶点坐标D(1,-),对称轴直线x=1. (3)连接OD,对于抛物线解析式y=x2-x-4 当y=0时,得x2-2x-8=0, 解得:x1=-2,x2=4. ∴E(4,0),OE=4. ∴S四边形ABDE=S△AOB+S△BOD+S△EOD=OA•OB+OB•xD的横坐标+OEyD的纵坐标=4+2+9=15.
复制答案
考点分析:
相关试题推荐
(2006•临安市)如图,△OAB是边长为2+manfen5.com 满分网的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.
(1)当A′E∥x轴时,求点A′和E的坐标;
(2)当A′E∥x轴,且抛物线y=-manfen5.com 满分网x2+bx+c经过点A′和E时,求抛物线与x轴的交点的坐标;
(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.

manfen5.com 满分网 查看答案
(2006•临汾)如图,在等腰梯形ABCD中,AB∥DC,∠A=45°,AB=10cm,CD=4cm.等腰直角三角形PMN的斜边MN=10cm,A点与N点重合,MN和AB在一条直线上,设等腰梯形ABCD不动,等腰直角三角形PMN沿AB所在直线以1cm/s的速度向右移动,直到点N与点B重合为止.
(1)等腰直角三角形PMN在整个移动过程中与等腰梯形ABCD重叠部分的形状由______形变化为______形;
(2)设当等腰直角三角形PMN移动x(s)时,等腰直角三角形PMN与等腰梯形ABCD重叠部分的面积为y(cm2),求y与x之间的函数关系式;
(3)当x=4(s)时,求等腰直角三角形PMN与等腰梯形ABCD重叠部分的面积.manfen5.com 满分网
查看答案
(2006•临汾)如图,直线y=-x+3与x轴,y轴分别相交于点B,点C,经过B,C两点的抛物线y=ax2+bx+c与x轴的另一交点为A,顶点为P,且对称轴是直线x=2.
(1)求A点的坐标;
(2)求该抛物线的函数表达式;
(3)连接AC.请问在x轴上是否存在点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2006•临沂)如图,在矩形ABCD中,AB=3cm,BC=4cm.设P,Q分别为BD,BC上的动点,在点P自点D沿DB方向作匀速移动的同时,点Q自点B沿BC方向向点C作匀速移动,移动的速度均为1cm/s,设P,Q移动的时间为t(0<t≤4).
(1)写出△PBQ的面积S(cm2)与时间t(s)之间的函数表达式,当t为何值时,S有最大值,最大值是多少?
(2)当t为何值时,△PBQ为等腰三角形?
(3)△PBQ能否成为等边三角形?若能,求t的值;若不能,说明理由.

manfen5.com 满分网 查看答案
(2006•临沂)如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.
(1)求此抛物线的解析式;
(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.
①求证:PB=PS;
②判断△SBR的形状;
③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似?若存在,请找出M点的位置;若不存在,请说明理由.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.