满分5 > 初中数学试题 >

(2006•江西)一条抛物线y=x2+mx+n经过点(0,)与(4,). (1)...

(2006•江西)一条抛物线y=manfen5.com 满分网x2+mx+n经过点(0,manfen5.com 满分网)与(4,manfen5.com 满分网).
(1)求这条抛物线的解析式,并写出它的顶点坐标;
(2)现有一半径为1,圆心P在抛物线上运动的动圆,当⊙P与坐标轴相切时,求圆心P的坐标.

manfen5.com 满分网
(1)将已知点的坐标代入抛物线中即可得出二次函数的解析式.进而可求出抛物线的顶点坐标; (2)本题要分两种情况进行讨论: ①当圆与y轴相切时,那么圆心的横坐标的绝对值为1,可将其横坐标(分正负两个)代入抛物线的解析式中,即可求出P点的坐标; ②当圆与x轴相切时,那么圆心的纵坐标的绝对值为1,然后仿照①的方法即可求出P点的坐标. 【解析】 (1)由抛物线过(0,),(4,)两点, 得, 解得. ∴抛物线的解析式是:y=x2-x+,(3分) 由y=x2-x+=(x-2)2+,得抛物线的顶点(2,); (2)设点P的坐标为(x,y) ①当圆P与y轴相切时,有|x|=1, ∴x=±1 由x=1,得y=×1-1+= 由x=-1,得y=×(-1)2-(-1)+= 此时,点P的坐标为P1(1,),P2(-1,); ②当圆P与x轴相切时,有|y|=1 ∵抛物线的开口向上,顶点在x轴的上方,y>0,∴y=1 由y=1,得x2-x+=1 解得x=2± 此时,点P的坐标为P1(2-,1),P4(2+,1) 综上所述,圆心P的坐标为P1(1,),P2(-1,),P3(,1),P4(,1).
复制答案
考点分析:
相关试题推荐
(2006•金华)九(1)班数学兴趣小组在社会实践活动中,进行了如下的课题研究:用一定长度的铝合金材料,将它设计成外观为长方形的三种框架,使长方形框架面积最大.
小组讨论后,同学们做了以下三种试验:
manfen5.com 满分网manfen5.com 满分网
请根据以上图案回答下列问题:
(1)在图案1中,如果铝合金材料总长度(图中所有黑线的长度和)为6m,当AB为1m,长方形框架ABCD的面积是______m2
(2)在图案2中,如果铝合金材料总长度为6m,设AB为xm,长方形框架ABCD的面积为S=______(用含x的代数式表示);当AB=______m时,长方形框架ABCD的面积S最大;在图案3中,如果铝合金材料总长度为lm,设AB为xm,当AB=______m时,长方形框架ABCD的面积S最大.
(3)经过这三种情形的试验,他们发现对于图案4这样的情形也存在着一定的规律.探索:如图案4如果铝合金材料总长度为lm共有n条竖档时,那么当竖档AB多少时,长方形框架ABCD的面积最大.
查看答案
(2006•锦州)如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方).
(1)求A、B两点的坐标;
(2)设△OMN的面积为S,直线l运动时间为t秒(0≤t≤6),试求S与t的函数表达式;
(3)在题(2)的条件下,t为何值时,S的面积最大?最大面积是多少?
manfen5.com 满分网
查看答案
(2006•荆门)在平面直角坐标系中,已知A(0,3),B(4,0),设P、Q分别是线段AB、OB上的动点,它们同时出发,点P以每秒3个单位的速度从点A向点B运动,点Q以每秒1个单位的速度从点B向点O运动.设运动时间为t(秒).
(1)用含t的代数式表示点P的坐标;
(2)当t为何值时,△OPQ为直角三角形?
(3)在什么条件下,以Rt△OPQ的三个顶点能确定一条对称轴平行于y轴的抛物线?选择一种情况,求出所确定的抛物线的解析式.

manfen5.com 满分网 查看答案
(2006•荆州)在平面直角坐标系中有一点A(manfen5.com 满分网),过A点作x轴的平行线l,在l上有一不与A点重合的点B,连接OA,OB.将OA绕O点顺时针方向旋转α°到OA1,OB绕O点逆时针方向旋转α°到OB1
(1)当B点在A点右侧时,如图(1).如果∠AOB=20°,∠A1OB=110°,α=______.这时直线AB1与直线A1B有何特殊的位置关系证明你的结论.
(2)如果B点的横坐标为t,△OAB的面积为S,直接写出S关于t的函数关式,并指出t的取值范围.
(3)当α=60时,直线B1A交y轴于D,求以D为顶点且经过A点的抛物线的解析式.
manfen5.com 满分网
查看答案
(2006•兰州)在⊙O的内接△ABC中,AB+AC=12,AD⊥BC,垂足为D,且AD=3,设⊙O的半径为y,AB的长为x.
(1)求y关于x的函数关系式;
(2)当AB的长等于多少时,⊙O的面积最大,并求出⊙O的最大面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.