满分5 > 初中数学试题 >

(2006•鄂尔多斯)如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长...

(2006•鄂尔多斯)如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于C,过点C的直线y=2x+b交x轴于D,且⊙P的半径为manfen5.com 满分网,AB=4.
(1)求点B,P,C的坐标;
(2)求证:CD是⊙P的切线;
(3)若二次函数y=-x2+(a+1)x+6的图象经过点B,求这个二次函数的解析式,并写出使二次函数值小于一次函数y=2x+b值的x的取值范围.

manfen5.com 满分网
(1)连接CA,构造直角三角形,运用勾股定理,求出各线段的长,进而求出B,P,C的坐标; (2)根据一次函数图象上点的坐标特征,求出对应线段的长,证明△DAC≌△POB,然后得到∠DCA=∠ABC,再根据直角三角形的性质求出∠DCA+∠ACB=90°,利用切线判定定理即可解答; (3)把点B代入y=-x2+(a+1)x+6即可求出a的值,进而求出函数解析式;求出两函数图象交点,由图可得结论. (1)【解析】 如图,连接CA. ∵OP⊥AB, ∴OB=OA=2.(1分) ∵OP2+BO2=BP2 ∴OP2=5-4=1,OP=1.(2分) ∵BC是⊙P的直径, ∴∠CAB=90°.(也可用勾股定理求得下面的结论) ∵CP=BP,OB=OA, ∴AC=2OP=2.(3分) ∴B(2,0),P(0,1),C(-2,2).(写错一个不扣分)(4分) (2)证明:∵y=2x+b过C点, ∴b=6∴y=2x+6.(5分) ∵当y=0时,x=-3, ∴D(-3,0). ∴AD=1.(6分) ∵OB=AC=2,AD=OP=1,∠CAD=∠POB=90°, ∴△DAC≌△POB. ∴∠DCA=∠ABC. ∵∠ACB+∠CBA=90°, ∴∠DCA+∠ACB=90°.(也可用勾股定理逆定理证明)(7分) ∴DC是⊙P的切线.(8分) (3)【解析】 ∵y=-x2+(a+1)x+6过B(2,0)点, ∴0=-22+(a+1)×2+6. ∴a=-2.(9分) ∴y=-x2-x+6.(10分) 因为函数y=-x2-x+6与y=2x+6的图象交点是(0,6)和点D(-3,0)(画图可得此结论)(11分) 所以满足条件的x的取值范围是x<-3或x>0.(12分)
复制答案
考点分析:
相关试题推荐
(2006•鄂州)如图,直线y=-manfen5.com 满分网+8与x轴、y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处.
(1)试确定直线AM的函数关系式;
(2)求过A、B、M三点的抛物线的函数关系式.

manfen5.com 满分网 查看答案
(2006•防城港)抛物线y=-x2+2bx-(2b-1)(b为常数)与x轴相交于A(x1,0),B(x2,0)(x2>x1>0)两点,设OA•OB=3(O为坐标系原点).
(1)求抛物线的解析式;
(2)设抛物线的顶点为C,抛物线的对称轴交x轴于点D,求证:点D是△ABC的外心;
(3)在抛物线上是否存在点P,使S△ABP=1?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2006•防城港)在矩形ABCD中,AB=4,BC=2,以A为坐标原点,AB所在的直线为x轴,建立直角坐标系.然后将矩形ABCD绕点A逆时针旋转,使点B落在y轴的E点上,则C和D点依次落在第二象限的F点上和x轴的G点上(如图).
(1)求经过B,E,G三点的二次函数解析式;
(2)设直线EF与(1)的二次函数图象相交于另一点H,试求四边形EGBH的周长.
(3)设P为(1)的二次函数图象上的一点,BP∥EG,求P点的坐标.

manfen5.com 满分网 查看答案
(2006•佛山)已知:在四边形ABCD中,AB=1,E,F,G,H分别是AB,BC,CD,DA上的点,且AE=BF=CG=DH.设四边形EFGH的面积为S,AE=x(0≤x≤1).
(1)如图1,当四边形ABCD为正方形时,
①求S关于x的函数解析式,并在图2中画出函数的草图;
②当x为何值时,S=manfen5.com 满分网
(2)如图3,当四边形ABCD为菱形,且∠A=30°时,四边形EFGH的面积能否等于manfen5.com 满分网?若能,求出相应x的值;若不能,请说明理由.
manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
查看答案
(2006•佛山)已知:在四边形ABCD中,AB=1,E、F、G、H分别时AB、BC、CD、DA上的点,且AE=BF=CG=DH.设四边形EFGH的面积为S,AE=x(0≤x≤1).
(1)如图①,当四边形ABCD为正方形时,
①求S关于x的函数解析式,并求S的最小值S
②在图②中画出①中函数的草图,并估计S=0.6时x的近似值(精确到0.01);
(2)如图③,当四边形ABCD为菱形,且∠A=30°时,四边形EFGH的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.