满分5 > 初中数学试题 >

(2006•巴中)如图,在平面直角坐标系中,以点0′(-2,-3)为圆心,5为半...

(2006•巴中)如图,在平面直角坐标系中,以点0′(-2,-3)为圆心,5为半径的圆交x轴于A、B两点,过点B作⊙O′的切线,交y轴于点C,过点0′作x轴的垂线MN,垂足为D,一条抛物线(对称轴与y轴平行)经过A、B两点,且顶点在直线BC上.
(1)求直线BC的解析式;
(2)求抛物线的解析式;
(3)设抛物线与y轴交于点P,在抛物线上是否存在一点Q,使四边形DBPQ为平行四边形?若存在,请求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)求直线BC的解析式,首先要求出的是B、C的坐标,即OB、OC的长;连接O′B,在直角三角形O′DB中可根据O′D及半径的长用勾股定理求出DB的长,然后根据OD的长即O′横坐标的绝对值求出OB的长,即可求出B的坐标.求OC长,可根据△BOC∽△O′DB得出的比例线段来求出.求出B、C的坐标后,可用待定系数法求出直线BC的解析式. (2)由于抛物线过A、B两点,根据抛物线的对称性进可得出抛物线的对称轴为x=-2,又已知抛物线的顶点在直线BC上,由此可求出抛物线顶点的坐标.然后用顶点式的二次函数通式来设抛物线的解析式,然后将B点坐标代入即可求出抛物线的解析式. (3)可根据(2)得出的抛物线的解析式,求出P点的坐标.由于四边形DBPQ为平行四边形,那么DP平行且相等于DB,因此可将P点坐标左移DB长即4个单位,即可得出Q点,然后将Q点坐标代入抛物线的解析式中即可判断出Q点是否在抛物线上. 【解析】 (1)连接O′B ∵O′(-2,-3),MN过点O′且与x轴垂直 ∴O′D=3,OD=2,AD=BD=AB ∵⊙O′的半径为5 ∴BD=AD=4 ∴OA=6,OB=2 ∴点A、B的坐标分别为(-6,0)、(2,0) ∵BC切⊙O′于B ∴O′B⊥BC ∴∠OBC+∠O′BD=90° ∵∠O′BD+∠BO′D=90° ∴∠OBC=∠BO′D ∵∠BOC=∠BDO′=90° ∴△BOC∽△O′DB ∴ ∴OC== ∴点C的坐标为(0,) 设直线BC的解析式为y=kx+b ∴ 解得 ∴直线BC的解析式为y=-x+; (2)由圆和抛物线的对称性可知MN是抛物线的对称轴, ∴抛物线顶点的横坐标为-2 ∵抛物线的顶点在直线y=-x+上 ∴y=即抛物线的顶点坐标为(-2,) 设抛物线的解析式为y=a(x+6)(x-2) 得=a(-2+6)(-2-2) 解得 ∴抛物线的解析式为y=-(x+6)(x-2)=-x2-x+4; (3)由(2)得抛物线与y轴的交点P的坐标为(0,4), 若四边形DBPQ是平行四边形, 则有BD∥PQ,BD=PQ, ∴点Q的纵坐标为4 ∵BD=4 ∴PQ=4 ∴点Q的横坐标为-4 ∴点Q的坐标为(-4,4) ∴当x=-4时,y=-x2-x+4=-×16++4=4 ∴点Q在抛物线上 ∴在抛物线上存在一点Q(-4,4),使四边形DBPQ为平行四边形.
复制答案
考点分析:
相关试题推荐
(2006•北京)已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点.
(1)求此抛物线的解析式;
(2)若点D为线段OA的一个三等分点,求直线DC的解析式;
(3)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A′求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长.
查看答案
(2006•北京)已知:抛物线y=-x2+mx+2m2(m>0)与x轴交于A、B两点,点A在点B的左边,C是抛物线上一个动点(点C与点A、B不重合),D是OC的中点,连接BD并延长,交AC于点E.
(1)用含m的代数式表示点A、B的坐标;
(2)求manfen5.com 满分网的值;
(3)当C、A两点到y轴的距离相等,且S△CED=manfen5.com 满分网时,求抛物线和直线BE的解析式.

manfen5.com 满分网 查看答案
(2006•滨州)如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成长方形零件PQMN,使长方形PQMN的边QM在BC上,其余两个顶点P,N分别在AB,AC上.
(Ⅰ)求这个长方形零件PQMN面积S的最大值;
(Ⅱ)在这个长方形零件PQMN面积最大时,能否将余下的材料△APN,△BPQ,△NMC剪下再拼成(不计接缝用料及损耗)与长方形PQMN大小一样的长方形?若能,试给出一种拼法;若不能,试说明理由.

manfen5.com 满分网 查看答案
(2006•滨州)已知:抛物线M:y=x2+(m-1)x+(m-2)与x轴相交于A(x1,0),B(x2,0)两点,且x1<x2
(Ⅰ)若x1x2<0,且m为正整数,求抛物线M的解析式;
(Ⅱ)若x1<1,x2>1,求m的取值范围;
(Ⅲ)试判断是否存在m,使经过点A和点B的圆与y轴相切于点C(0,2)?若存在,求出M:y=x2+(m-1)x+(m-2)的值;若不存在,试说明理由;
(Ⅳ)若直线l:y=kx+b过点F(0,7),与(Ⅰ)中的抛物线M相交于P,Q两点,且使manfen5.com 满分网,求直线l的解析式.
查看答案
(2006•长春)如图,P为抛物线y=manfen5.com 满分网x2-manfen5.com 满分网x+manfen5.com 满分网上对称轴右侧的一点,且点P在x轴上方,过点P作PA垂直x轴于点A,PB垂直y轴于点B,得到矩形PAOB.若AP=1,求矩形PAOB的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.