(2004•黑龙江)某牛奶公司计划在三栋楼之间建一个取奶站,三栋楼在一条直线上,顺次为A楼、B楼、C楼,其中A楼与B楼之间的距离为40米,B楼与C楼之间的距离为60米、已知A楼每天有20人取奶,B楼每天有70人取奶,C楼每天有60人取奶,公司提出两种建站方案:
方案一:让每天所有取奶的人到奶站的距离最小;
方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站的距离之和,
(1)若按第一种方案建站,取奶站应建在什么位置?
(2)若按方案二建站,取奶站应建在什么位置?
(3)在(2)的情况下,若A楼每天取奶的人数增加,增加的人数不超过22人,那么取奶站将离B楼越来越远,还是越来越近?请说明理由.
考点分析:
相关试题推荐
(2004•黑龙江)下表表示甲、已两名选手在一次自行车越野赛中,路程y(千米)与时间x(分)变化的图象(全程)
根据图象完成下列问题:
(1)比赛开始多少分钟,两人第一次相遇;
(2)这次比赛全程是多少千米?
(3)求比赛开始多少分钟时,两人第二次相遇?
查看答案
(2004•淮安)国泰玩具厂工人的工作时间:每月25天,每天8小时.待遇:按件计酬,多劳多得,每月另加福利工资100元,按月结算.该厂生产A、B两种产品,工人每生产一件A种产品,可得报酬0.75元,每生产一件B种产品,可得报酬1.40元.下表记录了工人小李的工作情况:根据上表提供的信息,请回答下列问题:
(1)小李每生产一件A种产品、每生产一件B种产品,分别需要多少分钟?
(2)如果生产各种产品的数目没有限制,那么小李每月的工资数目在什么范围之内?
生产A种产品件数(件) | 生产B种产品件数(件) | 总时间(分) |
1 | 1 | 35 |
3 | 2 | 85 |
查看答案
在直角坐标系中,横、纵坐标都为整数的点叫做整点.设坐标轴的单位长为1厘为,整点P从原点O出发,速度为1厘米/秒,且点P只能向上或向右运动.
请回答下列问题:
(1)填表;
(2)当点P从点O出发4秒时,可能得到的整点的坐标是:______;
(3)当点P从点O出发10秒时,可得到的整点个数是______个;
(4)当点P从O点出发______秒时,可得到整点(10,5);
(5)当点P从点O出发30秒时,整点P恰好在直线y=2x-6上,请求P点坐标;
(6)若设点P从点O出发的时间t(秒)时,可能得到的整点个数为n,试写出n与t之间的函数关系式,并写出t的取值范围.
P从O出发的时间 | 可以得到的整点的坐标 | 可以得到的整点的个数 |
1秒 | (0,1)、(1,0) | 2 |
2秒 | | |
3秒 | | |
查看答案
(2004•吉林)如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下人的身高h是指距d的一次函数.下表是测得的指距与身高的一组数据:
指距d(cm) | 20 | 21 | 22 | 23 |
身高h(cm) | 160 | 169 | 178 | 187 |
(1)求出h与d之间的函数关系式;(不要求写出自变量d的取值范围)
(2)某人身高为196cm,一般情况下他的指距应是多少?
查看答案
(2004•济宁)我市某县素以“中国蒜都”著称.某运输公司计划用10辆汽车将甲、乙、丙三种大蒜共100吨运输到外地,按规定每辆车只能装同一种大蒜,且必须满载,每种大蒜不少于一车.
(1)设用x辆车装运甲种大蒜,用y辆车装运乙种大蒜.根据下表提供的信息,求y与x之间的函数关系式,并求自变量x的取值范围;
(2)设此次运输的利润为M(百元),求M与x的函数关系式及最大运输利润,并安排此时相应的车辆分配方案.
大蒜品种 | 甲 | 乙 | 丙 |
每辆汽车的满载量(吨) | 8 | 10 | 11 |
运输每吨大蒜获利(元) | 2.2 | 2.1 | 2 |
查看答案