满分5 > 初中数学试题 >

(2004•深圳)直线y=-x+m与直线y=x+2相交于y轴上的点C,与x轴分别...

(2004•深圳)直线y=-x+m与直线y=manfen5.com 满分网x+2相交于y轴上的点C,与x轴分别交于点A、B.
(1)求A、B、C三点的坐标;
(2)经过上述A、B、C三点作⊙E,求∠ABC的度数,点E的坐标和⊙E的半径;
(3)若点P是第一象限内的一动点,且点P与圆心E在直线AC的同一侧,直线PA、PC分别交⊙E于点M、N,设∠APC=θ,试求点M、N的距离.(可用含θ的三角函数式表示)

manfen5.com 满分网
(1)直线y=x+2与y轴的交点可以求出,把这点的坐标就可以求出直线y=-x+m的解析式,两个函数与x轴的交点就可以求出; (2)根据三角函数可以求出角的度数.根据OC、OA、OB的长度根据三角函数可以根据三角函数求出角的度数; (3)根据正弦定理就可以解决. 【解析】 (1)直线y=x+2中令x=0, 解得y=2,因而C点的坐标是(0,2), 把(0,2)代入直线y=-x+m, 解得m=2, ∴解析式是y=-x+2, 令y=0,解得x=2,则A点的坐标是(2,0),在y=x+2中令y=0, 解得x=2则B的坐标是(2,0); (2)根据A、B、C的坐标得到OC=2,OA=2,OB=2,根据三角函数得到∠ABC=30°. 连接AE,CE,则∠AEC=60°, ∴△ACE是等边三角形,边长是2, 因而E的坐标是(,+1),半径是2; (3)如图所示:MN为⊙E中任一弦,它对的圆周角为∠B,当AM为直径, 则∠ANM为直角,则sinB=sinA= 即MN=AM•sinA①(其实就是正弦定理),这是本题的解题的理论基础. (I)当点P在⊙E外时,如图连接AN, 则∠MAN=∠ANC-∠P=∠ABC-∠P=30°-θ 由①得:MN=4sin(30°-θ); (II)当P在⊙E内时同理可得:MN=4sin(θ-30°)其它情况研究方法相同, (III)当P在⊙E上时,MN=0.
复制答案
考点分析:
相关试题推荐
(2004•沈阳)如图,直线l:y=manfen5.com 满分网x+manfen5.com 满分网与x轴、y轴分别交于点B、C,以点A(1,0)为圆心,以AB的长为半径作⊙A,分别交x轴、y轴正半轴于点D、E,直线l与⊙A交于点F,分别过点B、F作⊙A的切线交于点M.
(1)直接写出点B、C的坐标;
(2)求直线MF的解析式;
(3)若点P是manfen5.com 满分网上任意一点(不与B、F重合).连接BP、FP.过点M作MN∥PF,交直线l于点N.设PB=a,MN=b,求b与a的函数关系式,并写出自变量a的取值范围;
(4)若将(3)中的条件点P是manfen5.com 满分网上任意一点,改为点P是⊙A上任意一点,其它条件不变.当点P在⊙A上的什么位置时,△BMN为直角三角形,并写出此时点N的坐标.(第(4)问直接写出结果,不要求证明或计算过程)

manfen5.com 满分网 查看答案
(2004•十堰)在平面直角坐标系xoy中,已知A(4,0)、B(0,3),P是线段AB上一动点(与点A、B不重合),Q是线段OA上一动点(与点O、A不重合),C为OQ的中点.
(1)求直线AB的解析式:
(2)过点C作AB的垂线,垂足为D,设OC=x,CD=d,写出d与x的函数关系式,并指出自变量x的取值范围;
(3)当OQ=3时,以OQ为直径作圆C,试判断直线AB与圆C的位置关系;
(4)当PQ与x轴垂直时△OPQ可能为直角三角形吗?若有可能,请求出线段OQ的长的取值范围:若不可能,请说明理由.

manfen5.com 满分网 查看答案
(2004•厦门)已知圆心在原点,半径为1的⊙O,直线AB与⊙O切于点P (m,n).且与x、y轴交于点A(a,0)、B(0,b)(a>0,b>0).
(1)如图1,当m=manfen5.com 满分网时,求a的值;
(2)如图2,连接OP,过P向x轴引垂线交x轴于点C,设x表示△OPC的面积,y=a+b,试求y与x之间的函数关系式,并写出自变量x的取值范围.
manfen5.com 满分网
查看答案
(2005•玉林)如图,A、B两点的坐标分别是(x1,0)、(x2,0),其中x1、x2是关于x的方程x2+2x+m-3=0的两根,且x1<0<x2
(1)求m的取值范围;
(2)设点C在y轴的正半轴上,∠ACB=90°,∠CAB=30°,求m的值;
(3)在上述条件下,若点D在第二象限,△DAB≌△CBA,求出直线AD的函数解析式.

manfen5.com 满分网 查看答案
(2004•大连)4×100米拉力赛是学校运动会最精彩的项目之一.图中的实线和虚线分别是初三•一班和初三•二班代表队在比赛时运动员所跑的路程y(米)与所用时间x(秒)的函数图象(假设每名运动员跑步速度不变,交接棒时间忽略不计).问题:
(1)初三•二班跑得最快的是第______接力棒的运动员;
(2)发令后经过多长时间两班运动员第一次并列?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.