满分5 > 初中数学试题 >

(2010•楚雄州)已知:如图,⊙A与y轴交于C、D两点,圆心A的坐标为(1,0...

(2010•楚雄州)已知:如图,⊙A与y轴交于C、D两点,圆心A的坐标为(1,0),⊙A的半径为manfen5.com 满分网,过点C作⊙A的切线交x轴于点B(-4,0).
manfen5.com 满分网
(1)求切线BC的解析式;
(2)若点P是第一象限内⊙A上的一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点G的坐标;
(3)向左移动⊙A(圆心A始终保持在x轴上),与直线BC交于E、F,在移动过程中是否存在点A,使△AEF是直角三角形?若存在,求出点A的坐标;若不存在,请说明理由.
(1)连接AC,由于BC与⊙A相切,则AC⊥BC,在Rt△ABC中,OC⊥AB,根据射影定理即可求得OC的长,从而得到C点的坐标,进而用待定系数法求出直线BC的解析式. (2)可设出G点的坐标(设横坐标,利用直线BC的解析式表示纵坐标),连接AP、AG;由于GC、GP都是⊙A的切线,那么∠AGC=∠ABP=60°,在Rt△AGC中,AC的长易求得,根据∠AGC的度数,即可求得AG的长;过G作GH⊥x轴于H,在Rt△GAH中,可根据G点的坐标表示出AH、GH的长,进而由勾股定理求得G点的坐标. (3)若⊙A与直线交于点E、F,则AE=AF,如果△AEF是直角三角形,则∠EAF必为直角,那么△EAF是以A为顶点的等腰直角三角形,因此可分作两种情况考虑: ①点A在B点右侧时,可过A作直线BC的垂线,设垂足为M,在(2)题已经求得了⊙A的半径,即可得到AM的长,易证得△BAM∽△BCO,通过相似三角形所得比例线段即可求得AB的长,进而可得到OA的长,从而得出A点的坐标; ②点A在B点左侧时,方法同①. 【解析】 (1)如图1所示,连接AC,则AC=, 在Rt△AOC中,AC=,OA=1,则OC=2, ∴点C的坐标为(0,2); 设切线BC的解析式为y=kx+b,它过点C(0,2),B(-4,0), 则有,解之得; ∴.(4分) (2)如图1所示,设点G的坐标为(a,c),过点G作GH⊥x轴,垂足为H点, 则OH=a,GH=c=a+2,(5分) 连接AP,AG; 因为AC=AP,AG=AG,所以Rt△ACG≌Rt△APG(HL), 所以∠AGC=×120°=60°, 在Rt△ACG中,∠AGC=60°,AC=, ∴sin60°=,∴AG=;(6分) 在Rt△AGH中,AH=OH-OA=a-1,GH=a+2, ∵AH2+GH2=AG2, ∴(a-1)2+=, 解之得:a1=,a2=-(舍去);(7分) ∴点G的坐标为(,+2).(8分) (3)如图2所示,在移动过程中,存在点A,使△AEF为直角三角形.(9分) 要使△AEF为直角三角形,∵AE=AF, ∴∠AEF=∠AFE≠90°,∴只能是∠EAF=90°; 当圆心A在点B的右侧时,过点A作AM⊥BC,垂足为点M, 在Rt△AEF中,AE=AF=, 则EF=,AM=EF=; 在Rt△OBC中,OC=2,OB=4,则BC=2, ∵∠BOC=∠BMA=90°,∠OBC=∠OBM, ∴△BOC∽△BMA, ∴=, ∴AB=, ∴OA=OB-AB=4-, ∴点A的坐标为(-4+,0);(11分) 当圆心A在点B的左侧时,设圆心为A′,过点A′作A′M′⊥BC于点M′,可得: △A′M′B≌△AMB,A′B=AB=, ∴OA′=OB+A′B=4+, ∴点A′的坐标为(-4-,0); 综上所述,点A的坐标为(-4+,0)或(-4-,0).(13分)
复制答案
考点分析:
相关试题推荐
(2004•常州)用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点,以格点为顶点的多边形叫格点多边形.设格点多边形的面积为S,它各边上格点的个数和为x.
manfen5.com 满分网
(1)上图中的格点多边形,其内部都只有一个格点,它们的面积与各边上格点的个数和的对应关系如下表,请写出S与x之间的关系式;
答:S=______
多边形的序号
多边形的面积S22.534
各边上格点的个数和x4568
(2)请你再画出一些格点多边形,使这些多边形内部都有而且只有2格点.此时所画的各个多边形的面积S与它各边上格点的个数和x之间的关系式是:S=______
(3)请你继续探索,当格点多边形内部有且只有n个格点时,猜想S与x有怎样的关系?
答:S=______
查看答案
(2004•丰台区)已知:把矩形AOBC放入直角坐标系xOy中,使OB、OA分别落在x轴、y轴上,点A的坐标为(0,2manfen5.com 满分网),连接AB,∠OAB=60°,将△ABC沿AB翻折,使C点落在该坐标平面内的D点处,AD交x轴于点E.
(1)求D点坐标;
(2)求经过点A、D的直线的解析式.
查看答案
(2004•广州)如图,直线y=manfen5.com 满分网(x+1)分别与x轴、y轴相交于A、B两点,等边△ABC的顶点C在第二象限.
(1)在所给图中,按尺规作图要求,求作等边△ABC(保留作图痕迹,不写作法);
(2)若一次函数y=kx+b的图象经过A、C两点,求k、b的值;
(3)以坐标原点O为圆心、OB的长为半径的圆交线段CA于点D,交CA的延长线于点E.求证:BD⊥CE.

manfen5.com 满分网 查看答案
(2004•海淀区)如示意图,在平面直角坐标系中,O为坐标原点,点A是x轴的负半轴上一点,以AO为直径的⊙P经过点C(-8,4).点E(m,n)在⊙P上,且-10<m≤-5,n<0,CE与x轴相交于点M,过C点作直线CN交x轴于点N,交⊙P于点F,使得△CMN是以MN为底的等腰三角形,经过E、F两点的直线与x轴相交于点Q.
(1)求出点A的坐标;
(2)当m=-5时,求图象经过E、Q两点的一次函数的解析式;
(3)当点E(m,n)在⊙P上运动时,猜想∠OQE的大小会发生怎样的变化?请对你的猜想加以证明.

manfen5.com 满分网 查看答案
(2004•河南)一次函数y=x+b,与x轴、y轴的交点分别为A、B,若△OAB的周长为2+manfen5.com 满分网(O为坐标原点),求b的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.