满分5 > 初中数学试题 >

(2004•河北)如图1和2,在20×20的等距网格(每格的宽和高均是1个单位长...

(2004•河北)如图1和2,在20×20的等距网格(每格的宽和高均是1个单位长)中,Rt△ABC从点A与点M重合的位置开始,以每秒1个单位长的速度先向下平移,当BC边与网的底部重合时,继续同样的速度向右平移,当点C与点P重合时,Rt△ABC停止移动.设运动时间为x秒,△QAC的面积为y.
(1)如图1,当Rt△ABC向下平移到Rt△A1B1C1的位置时,请你在网格中画出Rt△A1B1C1关于直线QN成轴对称的图形;
(2)如图2,在Rt△ABC向下平移的过程中,请你求出y与x的函数关系式,并说明当x分别取何值时,y取得最大值和最小值?最大值和最小值分别是多少?
(3)在Rt△ABC向右平移的过程中,请你说明当x取何值时,y取得最大值和最小值?最大值和最值分别是多少?为什么?(说明:在(3)中,将视你解答方法的创新程度,给予1~4分的加分)
manfen5.com 满分网
(1)根据平移的性质与轴对称图形的性质,可得答案; (2)根据题意,先设平移平移时间为x秒,进而可得关系式y=2x+40;(0≤x≤16);即可得出y取得最大值和最小值时x的值; (3)与(2)的方法类似,注意面积计算方法的不同即可. 【解析】 (1)如图1,△A2B2C2是△A1B1C1关于直线QN成轴对称的图形 ; (2)当△ABC以每秒1个单位长的速度向下平移x秒时(如图2), 则有:MA=x,MB=x+4,MQ=20, y=S梯形QMBC-S△AMQ-S△ABC =(4+20)(x+4)-×20x-×4×4 =2x+40(0≤x≤16).(6分) 由一次函数的性质可知: 当x=0时,y取得最小值,且y最小=40, 当x=16时,y取得最大值,且y最大=2×16+40=72;(8分) (3)解法一: 当△ABC继续以每秒1个单位长的速度向右平移时, 此时16≤x≤32,PB=20-(x-16)=36-x,PC=PB-4=32-x, ∴y=S梯形BAQP-S△CPQ-S△ABC=(4+20)(36-x)-×20×(32-x)-×4×4 =-2x+104(16≤x≤32).(10分) 由一次函数的性质可知: 当x=32时,y取得最小值,且y最小=-2×32+104=40; 当x=16时,y取得最大值,且y最大=-2×16+104=72.(12分) 解法二: 在△ABC自左向右平移的过程中, △QAC在每一时刻的位置都对应着(2)中△QAC某一时刻的位置, 使得这样的两个三角形关于直线QN成轴对称. 因此,根据轴对称的性质, 只需考查△ABC在自上至下平移过程中△QAC面积的变化情况, 便可以知道△ABC在自左向右平移过程中△QAC面积的变化情况.(10分)(另加2分) 当x=16时,y取得最大值,且y最大=72, 当x=32时,y取得最小值,且y最小=40.(12分)(再加2分) 说明:(1)本题解法较多,对于其他正确解法,请参照评分标准按步骤给分; (2)对于(3),如果学生按照解法一的方法求解,不加分.如果按照解法二利用图形变换的方法说明,可考虑加1~4分.
复制答案
考点分析:
相关试题推荐
(2010•楚雄州)已知:如图,⊙A与y轴交于C、D两点,圆心A的坐标为(1,0),⊙A的半径为manfen5.com 满分网,过点C作⊙A的切线交x轴于点B(-4,0).
manfen5.com 满分网
(1)求切线BC的解析式;
(2)若点P是第一象限内⊙A上的一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点G的坐标;
(3)向左移动⊙A(圆心A始终保持在x轴上),与直线BC交于E、F,在移动过程中是否存在点A,使△AEF是直角三角形?若存在,求出点A的坐标;若不存在,请说明理由.
查看答案
(2004•常州)用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点,以格点为顶点的多边形叫格点多边形.设格点多边形的面积为S,它各边上格点的个数和为x.
manfen5.com 满分网
(1)上图中的格点多边形,其内部都只有一个格点,它们的面积与各边上格点的个数和的对应关系如下表,请写出S与x之间的关系式;
答:S=______
多边形的序号
多边形的面积S22.534
各边上格点的个数和x4568
(2)请你再画出一些格点多边形,使这些多边形内部都有而且只有2格点.此时所画的各个多边形的面积S与它各边上格点的个数和x之间的关系式是:S=______
(3)请你继续探索,当格点多边形内部有且只有n个格点时,猜想S与x有怎样的关系?
答:S=______
查看答案
(2004•丰台区)已知:把矩形AOBC放入直角坐标系xOy中,使OB、OA分别落在x轴、y轴上,点A的坐标为(0,2manfen5.com 满分网),连接AB,∠OAB=60°,将△ABC沿AB翻折,使C点落在该坐标平面内的D点处,AD交x轴于点E.
(1)求D点坐标;
(2)求经过点A、D的直线的解析式.
查看答案
(2004•广州)如图,直线y=manfen5.com 满分网(x+1)分别与x轴、y轴相交于A、B两点,等边△ABC的顶点C在第二象限.
(1)在所给图中,按尺规作图要求,求作等边△ABC(保留作图痕迹,不写作法);
(2)若一次函数y=kx+b的图象经过A、C两点,求k、b的值;
(3)以坐标原点O为圆心、OB的长为半径的圆交线段CA于点D,交CA的延长线于点E.求证:BD⊥CE.

manfen5.com 满分网 查看答案
(2004•海淀区)如示意图,在平面直角坐标系中,O为坐标原点,点A是x轴的负半轴上一点,以AO为直径的⊙P经过点C(-8,4).点E(m,n)在⊙P上,且-10<m≤-5,n<0,CE与x轴相交于点M,过C点作直线CN交x轴于点N,交⊙P于点F,使得△CMN是以MN为底的等腰三角形,经过E、F两点的直线与x轴相交于点Q.
(1)求出点A的坐标;
(2)当m=-5时,求图象经过E、Q两点的一次函数的解析式;
(3)当点E(m,n)在⊙P上运动时,猜想∠OQE的大小会发生怎样的变化?请对你的猜想加以证明.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.