(2004•云南)某住宅小区,为美化环境,提高居民区生活质量,要建一个八边形居民广场(平面图如图所示),其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800平方米.
(1)设矩形的边长AB=x(米),AM=y(米),用含x的代数式表示y;
(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元,在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元,在四个三角形区域上铺设草坪,平均每平方米造价为40元.
①设该工程的总造价为S(元),求S关于x的函数关系式;
②若该工程的银行贷款为235000元,问仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能请说明理由;
③若该工程在银行贷款的基础上,又增加奖金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.
考点分析:
相关试题推荐
(2004•云南)下图表示近5年来某市的财政收入情况.图中x轴上1,2,…,5依次表示第1年,第2年,…,第5年,即1997年,1998年,…,2001年,可以看出,图中的折线近似于抛物线的一部分.
(1)请你求出过A、C、D三点的二次函数的解析式;
(2)分别求出当x=2和x=5时,(1)中的二次函数的函数值;并分别与B、E两点的纵坐标相比较;
(3)利用(1)中的二次函数的解析式预测今年该市的财政收入.
查看答案
(2004•淮安)已知:二次函数y=x
2-mx-4.
(1)求证:该函数的图象一定与x轴有两个不同的交点;
(2)设该函数的图象与x轴的交点坐标为(x
1,0)、(x
2,0),且
,求m的值,并求出该函数图象的顶点坐标.
查看答案
(2004•济南)已知抛物线y=-
x
2+(6-
)x+m-3与x轴有A、B两个交点,且A、B两点关于y轴对称.
(1)求m的值;
(2)写出抛物线解析式及顶点坐标;
(3)根据二次函数与一元二次方程的关系,将此题的条件换一种说法写出来.
查看答案
(2004•上海)在直角坐标平面内,点O为坐标原点,二次函数y=x
2+(k-5)x-(k+4)的图象交x轴于点A(x
1,0)、B(x
2,0),且(x
1+1)(x
2+1)=-8.
(1)求二次函数解析式;
(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.
查看答案
(2004•宿迁)已知抛物线y=-x
2+mx-m+2.
(Ⅰ)若抛物线与x轴的两个交点A、B分别在原点的两侧,并且AB=
,试求m的值;
(Ⅱ)设C为抛物线与y轴的交点,若抛物线上存在关于原点对称的两点M、N,并且△MNC的面积等于27,试求m的值.
查看答案