(2004•青岛)某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.
(1)如果增加x台机器,每天的生产总量为y件,请你写出y与x之间的关系式;
(2)增加多少台机器,可以使每天的生产总量最大,最大总量是多少?
考点分析:
相关试题推荐
(2004•青海)一男生在校运会的比赛中推铅球,铅球的行进高度y(m)与水平距离x(m)之间的关系用如图所示的二次函数图象表示.(铅球从A点被推出,实线部分表示铅球所经过的路线)
(1)由已知图象上的三点,求y与x之间的函数关系式;
(2)求出铅球被推出的距离;
(3)若铅球到达的最大高度的位置为点B,落地点为C,求四边形OABC的面积.
查看答案
(2004•泉州)某施工队修建一个抛物线形的水泥门洞,其高度OM为8米,地面宽度AB为12米,在门洞中搭一个“三角架”CDE.使C点在门洞的左侧,D为OB的中点,CE⊥AB于E,以AB所在直线为x轴,AB的中点O为原点建立直角坐标系(如图所示)
(1)请你直接写出A、B、M三点的坐标;
(2)现测得DE=7米,求“三角架”的高CE.
查看答案
(2004•三明)如图①是一张眼镜的照片,两镜片下半部分轮廓可以近似看成抛物线形状.建立如图②直角坐标系,已知左轮廓线端点A、B间的距离为4cm,点A、B与右轮廓线端点D、E均在平行于x轴的直线上,最低点C在x轴上,且与AB的距离CH=1cm,y轴平分BD,BD=2cm.解答下列问题:
(1)求轮廓线ACB的函数解析式;(写出自变量x的取值范围)
(2)由(1)写出右轮廓线DFE对应的函数解析式及自变量x的取值范围.
查看答案
(2004•泰州)观察图1至图5中小黑点的摆放规律,并按照这样的规律继续摆放.记第n个图中小黑点的个数为y.
解答下列问题:
(1)填表:
(2)当n=8时,y=______;
(3)根据上表中的数据,把n作为横坐标,把y作为纵坐标,在左图的平面直角坐标系中描出相应的各点(n,y),其中1≤n≤5;
(4)请你猜一猜上述各点会在某一函数的图象上吗?如果在某一函数的图象上,请写出该函数的解析式.
查看答案
(2004•无为县)为了顺应市场要求,无为县花炮厂技术部研制开发一种新产品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画了该厂年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s和t之间的关系).根据图象提供的信息,解答下列问题:
(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末花炮厂累积利润可达到30万元;
(3)求第8个月公司所获利润是多少万元?
查看答案