满分5 > 初中数学试题 >

(2004•玉溪)已知直线y=-2x+8交x轴于点A,交y轴于点C,在x轴上A点...

(2004•玉溪)已知直线y=-2x+8交x轴于点A,交y轴于点C,在x轴上A点左边有一点B,并满足|AB|=2,抛物线y=ax2+bx+c经过A、B、C三点.求抛物线的解析式.

manfen5.com 满分网
可先根据直线的解析式求出A,C的坐标,然后根据AB的长,求出B点的坐标.进而可用待定系数法求出抛物线的解析式. 【解析】 根据直线的解析式可知:A(4,0),C(0,8),根据|AB|=2,且B在A点左侧, 因此B点的坐标为(2,0). 设抛物线的解析式为y=a(x-4)(x-2). 将C点坐标代入抛物线的解析式中, 即可得出a=1. 因此抛物线的解析式为y=(x-4)(x-2)=x2-6x+8.
复制答案
考点分析:
相关试题推荐
(2004•岳阳)Rt△AOB中直角边OA、OB分别在x轴、y轴的正半轴上,O为坐标原点,以F为圆心的圆与y轴、直线AB分别相切于O、D(如图),若AD=2,AE=1.
(1)求BD的长度;
(2)求经过A、B两点的直线的解析式;
(3)求经过E、D、O三点的二次函数的解析式;
(4)判断(3)中抛物线的顶点是否在直线AB上.

manfen5.com 满分网 查看答案
(2004•枣庄)如图,函数y=ax2+bx+c(其中a,b,c为常数)的图象分别与x轴,y轴交于A,B,C三点,M为抛物线的顶点,且AC⊥BC,OA<OB.
(1)试确定a,b,c的符号;
(2)求证:b2-4ac>4;
(3)当b=2时,M点与经过A,B,C三点的圆的位置关系如何?证明你的结论.注:y=ax2+bx+c的对称轴为manfen5.com 满分网,顶点为manfen5.com 满分网
manfen5.com 满分网
查看答案
(2004•枣庄)如图,在△ABC中,AB=17,AC=5manfen5.com 满分网,∠CAB=45°,点O在BA上移动,以O为圆心作⊙O,使⊙O与边BC相切,切点为D,设⊙O的半径为x,四边形AODC的面积为y.
(1)求y与x的函数关系式;
(2)求x的取值范围;
(3)当x为何值时,⊙O与BC、AC都相切?

manfen5.com 满分网 查看答案
(2004•镇江)已知抛物线y=mx2-(m-5)x-5(m>0)与x轴交于两点A(x1,0)、B(x2,0)(x1<x2),与y轴交于点C,且AB=6.
(1)求抛物线和直线BC的解析式;
(2)在给定的直角坐标系中,画出抛物线和直线BC;
(3)若⊙P过A、B、C三点,求⊙P的半径;
(4)抛物线上是否存在点M,过点M作MN⊥x轴于点N,使△MBN被直线BC分成面积比为1:3的两部分?若存在,请求出点M的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2004•郑州)已知:如图,在平面直角坐标系中,半径为manfen5.com 满分网的⊙O′与y轴交于A、B两点,与直线OC相切于点C,∠BOC=45°,BC⊥OC,垂足为C.
(1)判断△ABC的形状;
(2)在manfen5.com 满分网上取一点D,连接DA、DB、DC,DA交BC于点E.求证:BD•CD=AD•ED;
(3)延长BC交x轴于点G,求经过O、C、G三点的二次函数的解析式.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.