(2004•扬州)如图,直角坐标系中,已知点A(3,0),B(t,0)(0<t<
),以AB为边在x轴上方作正方形ABCD,点E是直线OC与正方形ABCD的外接圆除点C以外的另一个交点,连接AE与BC相交于点F.
(1)求证:△OBC≌△FBA;
(2)一抛物线经过O、F、A三点,试用t表示该抛物线的解析式;
(3)设题(2)中抛物线的对称轴l与直线AF相交于点G,若G为△AOC的外心,试求出抛物线的解析式;
(4)在题(3)的条件下,问在抛物线上是否存在点P,使该点关于直线AF的对称点在x轴上?若存在,请求出所有这样的点;若不存在,请说明理由.
考点分析:
相关试题推荐
(2004•宜昌)如图,已知点A(0,1),C(4,3),E(
,
),P是以AC为对角线的矩形ABCD内部(不在各边上)的一动点,点D在y轴上,抛物线y=ax
2+bx+1以P为顶点.
(1)说明点A,C,E在一条直线上;
(2)能否判断抛物线y=ax
2+bx+1的开口方向?请说明理由;
(3)设抛物线y=ax
2+bx+1与x轴有交点F、G(F在G的左侧),△GAO与△FAO的面积差为3,且这条抛物线与线段AE有两个不同的交点,这时能确定a、b的值吗?若能,请求出a,b的值;若不能,请确定a、b的取值范围.
查看答案
(2004•玉溪)已知直线y=-2x+8交x轴于点A,交y轴于点C,在x轴上A点左边有一点B,并满足|AB|=2,抛物线y=ax
2+bx+c经过A、B、C三点.求抛物线的解析式.
查看答案
(2004•岳阳)Rt△AOB中直角边OA、OB分别在x轴、y轴的正半轴上,O为坐标原点,以F为圆心的圆与y轴、直线AB分别相切于O、D(如图),若AD=2,AE=1.
(1)求BD的长度;
(2)求经过A、B两点的直线的解析式;
(3)求经过E、D、O三点的二次函数的解析式;
(4)判断(3)中抛物线的顶点是否在直线AB上.
查看答案
(2004•枣庄)如图,函数y=ax
2+bx+c(其中a,b,c为常数)的图象分别与x轴,y轴交于A,B,C三点,M为抛物线的顶点,且AC⊥BC,OA<OB.
(1)试确定a,b,c的符号;
(2)求证:b
2-4ac>4;
(3)当b=2时,M点与经过A,B,C三点的圆的位置关系如何?证明你的结论.注:y=ax
2+bx+c的对称轴为
,顶点为
.
查看答案
(2004•枣庄)如图,在△ABC中,AB=17,AC=5
,∠CAB=45°,点O在BA上移动,以O为圆心作⊙O,使⊙O与边BC相切,切点为D,设⊙O的半径为x,四边形AODC的面积为y.
(1)求y与x的函数关系式;
(2)求x的取值范围;
(3)当x为何值时,⊙O与BC、AC都相切?
查看答案