(2004•天津)已知一次函数y
1=2x,二次函数y
2=x
2+1.
(Ⅰ)根据表中给出的x的值,计算对应的函数值y
1、y
2,并填在表格中:
(Ⅱ)观察第(Ⅰ)问表中有关的数据,证明如下结论:在实数范围内,对于x的同一个值,这两个函数所对应的函数值y
1≤y
2均成立;
(Ⅲ)试问,是否存在二次函数y
3=ax
2+bx+c,其图象经过点(-5,2),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值y
1≤y
3≤y
2均成立?若存在,求出函数y
3的解析式;若不存在,请说明理由.
考点分析:
相关试题推荐
(2004•天津)已知抛物线y=x
2+bx+c与x轴只有一个交点,且交点为A(2,0).
(Ⅰ)求b、c的值;
(Ⅱ)若抛物线与y轴的交点为B,坐标原点为O,求△OAB的周长.(答案可带根号)
查看答案
(2004•温州)已知抛物线y=-x
2+2(m-3)x+m-1与x轴交于B,A两点,其中B在x轴的负半轴上,点A在x轴的正半轴上,该抛物线与y轴交于点C.
(1)写出抛物线的开口方向与点C的坐标(用含m的式子表示);
(2)若tan∠CBA=3,试求抛物线的解析式;
(3)设点P(x,y)(其中0<x<3)是(2)中抛物线上的一个动点,试求四边形AOCP的面积的最大值及此时点P的坐标.
查看答案
(2004•乌鲁木齐)已知抛物线y=-x
2+(m-4)x+2m+4与x轴相交于A(x
1,0),B(x
2,0)与y轴交于点C,且x
1=-2x
2(x
1<x
2),点A关于y轴的对称点为D.
(1)确定A,B,C三点的坐标;
(2)求过B,C,D三点的抛物线的解析式;
(3)若y=3与(2)小题中所求抛物线交于M,N,以MN为一边,抛物线上任一点P(x,y)为顶点作为平行四边形,若平行四边形面积为S,写出S与P点纵坐标y的函数关系式;
(4)当
时,(3)小题中平行四边形的面积是否有最大值?若有,请求出;若无,请说明理由.
查看答案
(2004•无锡)已知直线y=-2x+b(b≠0)与x轴交于点A,与y轴交于点B;一抛物线的解析式为y=x
2-(b+10)x+c.
(1)若该抛物线过点B,且它的顶点P在直线y=-2x+b上,试确定这条抛物线的解析式;
(2)过点B作直线BC⊥AB交x轴于点C,若抛物线的对称轴恰好过C点,试确定直线y=-2x+b的解析式.
查看答案
(2004•芜湖)如图①,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D且AD与B相交于E点.已知:A(-2,-6),C(1,-3)
(1)求证:E点在y轴上;
(2)如果有一抛物线经过A,E,C三点,求此抛物线方程.
(3)如果AB位置不变,再将DC水平向右移动k(k>0)个单位,此时AD与BC相交于E′点,如图②,求△AE′C的面积S关于k的函数解析式.
查看答案