满分5 > 初中数学试题 >

(2004•上海)数学课上,老师提出: 如图,在平面直角坐标系中,O为坐标原点,...

(2004•上海)数学课上,老师提出:
如图,在平面直角坐标系中,O为坐标原点,A点的坐标为(1,0),点B在x轴上,且在点A的右侧,AB=OA,过点A和B作x轴的垂线,分别交二次函数y=x2的图象于点C和D,直线OC交BD于点M,直线CD交y轴于点H,记点C、D的横坐标分别为xC、xD,点H的纵坐标为yH
同学发现两个结论:
①S△CMD:S梯形ABMC=2:3 ②数值相等关系:xC•xD=-yH
(1)请你验证结论①和结论②成立;
(2)请你研究:如果上述框中的条件“A的坐标(1,0)”改为“A的坐标(t,0)(t>0)”,其他条件不变,结论①是否仍成立(请说明理由);
(3)进一步研究:如果上述框中的条件“A的坐标(1,0)”改为“A的坐标(t,0)(t>0)”,又将条件“y=x2”改为“y=ax2(a>0)”,其他条件不变,那么xC、xD与yH有怎样的数值关系?(写出结果并说明理由)

manfen5.com 满分网
(1)可先根据AB=OA得出B点的坐标,然后根据抛物线的解析式和A,B的坐标得出C,D两点的坐标,再依据C点的坐标求出直线OC的解析式.进而可求出M点的坐标,然后根据C、D两点的坐标求出直线CD的解析式进而求出D点的坐标,然后可根据这些点的坐标进行求解即可; (2)(3)的解法同(1)完全一样. 【解析】 (1)由已知可得点B的坐标为(2,0),点C坐标为(1,1),点D的坐标为(2,4), 由点C坐标为(1,1)易得直线OC的函数解析式为y=x, 故点M的坐标为(2,2), 所以S△CMD=1,S梯形ABMC= 所以S△CMD:S梯形ABMC=2:3, 即结论①成立. 设直线CD的函数解析式为y=kx+b, 则, 解得 所以直线CD的函数解析式为y=3x-2. 由上述可得,点H的坐标为(0,-2),yH=-2 因为xC•xD=2, 所以xC•xD=-yH, 即结论②成立; (2)(1)的结论仍然成立. 理由:当A的坐标(t,0)(t>0)时,点B的坐标为(2t,0),点C坐标为(t,t2),点D的坐标为(2t,4t2), 由点C坐标为(t,t2)易得直线OC的函数解析式为y=tx, 故点M的坐标为(2t,2t2), 所以S△CMD=t3,S梯形ABMC=t3. 所以S△CMD:S梯形ABMC=2:3, 即结论①成立. 设直线CD的函数解析式为y=kx+b, 则, 解得 所以直线CD的函数解析式为y=3tx-2t2; 由上述可得,点H的坐标为(0,-2t2),yH=-2t2 因为xC•xD=2t2, 所以xC•xD=-yH, 即结论②成立; (3)由题意,当二次函数的解析式为y=ax2(a>0),且点A坐标为(t,0)(t>0)时,点C坐标为(t,at2),点D坐标为(2t,4at2), 设直线CD的解析式为y=kx+b, 则:, 解得 所以直线CD的函数解析式为y=3atx-2at2,则点H的坐标为(0,-2at2),yH=-2at2. 因为xC•xD=2t2, 所以xC•xD=-yH.
复制答案
考点分析:
相关试题推荐
(2004•绍兴)在平面直角坐标系中,A(-1,0),B(3,0).
(1)若抛物线过A,B两点,且与y轴交于点(0,-3),求此抛物线的顶点坐标;
(2)如图,小敏发现所有过A,B两点的抛物线如果与y轴负半轴交于点C,M为抛物线的顶点,那么△ACM与△ACB的面积比不变,请你求出这个比值;
(3)若对称轴是AB的中垂线l的抛物线与x轴交于点E,F,与y轴交于点C,过C作CP∥x轴交l于点P,M为此抛物线的顶点.若四边形PEMF是有一个内角为60°的菱形,求此抛物线的解析式.

manfen5.com 满分网 查看答案
(2004•十堰)在平面直角坐标系xoy中,以O为原心,12为半径作圆交x轴于E,F两点,交y轴千C,D两点,G为劣弧manfen5.com 满分网上一点.且manfen5.com 满分网
(1)求G点的坐标;
(2)求过G、E、F三点的抛物线的解析式;
(3)点A为x轴正半轴上一点,且在圆O的外部,过A作圆O的一条切线AB,切点为B,交y轴正半轴于点H,若以点A、O、H为顶点的三角形与三角形EGF相似,求AF的长.

manfen5.com 满分网 查看答案
(2004•四川)如图,要在底边BC=160cm,高AD=120cm,的△ABC铁皮余料上截取一个矩形EFGH,使点H在AB上,点G在AC上,点E、F在BC上,AD交HG于点M,此时manfen5.com 满分网
(1)设矩形EFGH的长HG=y,宽HE=x,确定y与x的函数关系式;
(2)当x为何值时,矩形EFGH的面积S最大;
(3)以面积最大的矩形EFGH为侧面,围成一个圆柱形的铁桶,怎样围时,才能使铁桶的体积最大?请说明理由(注:围铁桶侧面时,接缝无重叠,底面另用材料配备)
manfen5.com 满分网
查看答案
(2004•遂宁)如图:已知,直线l1⊥l2,垂足为y轴上一点A,线段OA=2,OB=1.
(1)请直接写出A、B、C三点的坐标;
(2)已知二次函数y=ax2+bx+c的图象过点A、B、C,求出函数的解折式;
(3)(2)中的抛物线的对称轴上存在P,使△PBC为等腰直角三角形,请直接写出点P的坐标.

manfen5.com 满分网 查看答案
(2004•泰州)抛物线y=ax2+bx+c(a<0)交x轴于点A(-1,0)、B(3,0),交y轴于点C,顶点为D,以BD为直径的⊙M恰好过点C.
(1)求顶点D的坐标(用a的代数式表示);
(2)求抛物线的解析式;
(3)抛物线上是否存在点P使△PBD为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.