(2004•衢州)如图,在矩形ABCD中,AB=10cm,BC=20cm.P、Q两点同时从A点出发,分别以1cm/秒和2cm/秒的速度沿A⇒B⇒C⇒D⇒A运动,当Q点回到A点时,P、Q两点即停止运动,设点P、Q运动时间为t秒.
(1)当P、Q分别在AB边和BC边上运动时,设以P、B、Q为顶点的三角形面积为s,请写出s关于t的函数解析式及自变量t的取值范围;
(2)在整个运动过程中,t取何值时,PQ与BD垂直?
考点分析:
相关试题推荐
(2004•山西)已知二次函数y=
x
2+bx+c的图象经过点A(-3,6),并与x轴交于点B(-1,0)和点C,顶点为P.
(1)求这个二次函数的解析式,并在下面的坐标系中画出该二次函数的图象;
(2)设D为线段OC上的一点,满足∠DPC=∠BAC,求点D的坐标;
(3)在x轴上是否存在一点M,使以M为圆心的圆与AC、PC所在的直线及y轴都相切?如果存在,请求出点M的坐标;若不存在,请说明理由.
查看答案
(2004•陕西)如图,在Rt△ABC中,∠ACB=90°,BC>AC,以斜边AB所在直线为x轴,以斜边AB上的高所在直线为y轴,建立直角坐标系,若OA
2+OB
2=17,且线段OA、OB的长度是关于x的一元二次方程x
2-mx+2(m-3)=0的两个根.
(1)求C点的坐标;
(2)以斜边AB为直径作圆与y轴交于另一点E,求过A、B、E三点的抛物线的解析式,并画出此抛物线的草图;
(3)在抛物线上是否存在点P,使△ABP与△ABC全等?若存在,求出符合条件的P点的坐标;若不存在,说明理由.
查看答案
(2004•上海)数学课上,老师提出:
如图,在平面直角坐标系中,O为坐标原点,A点的坐标为(1,0),点B在x轴上,且在点A的右侧,AB=OA,过点A和B作x轴的垂线,分别交二次函数y=x
2的图象于点C和D,直线OC交BD于点M,直线CD交y轴于点H,记点C、D的横坐标分别为x
C、x
D,点H的纵坐标为y
H.
同学发现两个结论:
①S
△CMD:S
梯形ABMC=2:3 ②数值相等关系:x
C•x
D=-y
H(1)请你验证结论①和结论②成立;
(2)请你研究:如果上述框中的条件“A的坐标(1,0)”改为“A的坐标(t,0)(t>0)”,其他条件不变,结论①是否仍成立(请说明理由);
(3)进一步研究:如果上述框中的条件“A的坐标(1,0)”改为“A的坐标(t,0)(t>0)”,又将条件“y=x
2”改为“y=ax
2(a>0)”,其他条件不变,那么x
C、x
D与y
H有怎样的数值关系?(写出结果并说明理由)
查看答案
(2004•绍兴)在平面直角坐标系中,A(-1,0),B(3,0).
(1)若抛物线过A,B两点,且与y轴交于点(0,-3),求此抛物线的顶点坐标;
(2)如图,小敏发现所有过A,B两点的抛物线如果与y轴负半轴交于点C,M为抛物线的顶点,那么△ACM与△ACB的面积比不变,请你求出这个比值;
(3)若对称轴是AB的中垂线l的抛物线与x轴交于点E,F,与y轴交于点C,过C作CP∥x轴交l于点P,M为此抛物线的顶点.若四边形PEMF是有一个内角为60°的菱形,求此抛物线的解析式.
查看答案
(2004•十堰)在平面直角坐标系xoy中,以O为原心,12为半径作圆交x轴于E,F两点,交y轴千C,D两点,G为劣弧
上一点.且
.
(1)求G点的坐标;
(2)求过G、E、F三点的抛物线的解析式;
(3)点A为x轴正半轴上一点,且在圆O的外部,过A作圆O的一条切线AB,切点为B,交y轴正半轴于点H,若以点A、O、H为顶点的三角形与三角形EGF相似,求AF的长.
查看答案