(2004•江西)在平面直角坐标系中,给定以下五点A(-2,0),B(1,0),C(4,0),D(-2,
),E(0,-6).从这五点中选取三点,使经过这三点的抛物线满足以平行于y轴的直线为对称轴.我们约定:把经过三点A、E、B的抛物线表示为抛物线AEB.(如图所示)
(1)问符合条件的抛物线还有哪几条?不求解析式,请用约定的方法一一表示出来;
(2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出抛物线及直线的解析式;如果不存在,请说明理由.
考点分析:
相关试题推荐
(2004•南平)如图1,正方形ABCD的边长为2厘米,点E从点A开始沿AB边移动到点B,点F从点B开始沿BC边移动到点C,点G从点C开始沿CD边移动到点D,点H从点D开始沿DA边移动到点A、它们同时开始移动,且速度均为0.5厘米/秒.设运动的时间为t(秒)
(1)求证:△HAE≌△EBF;
(2)设四边形EFGH的面积为S(平方厘米),求S与t之间的函数关系式,并写出自变量t的取值范围;
(3)在图2中用描点法画出(2)中函数的图象,并观察图象,答出t为何值时,四边形EFGH的面积最小?最小值是多少?
查看答案
(2004•衢州)如图,在矩形ABCD中,AB=10cm,BC=20cm.P、Q两点同时从A点出发,分别以1cm/秒和2cm/秒的速度沿A⇒B⇒C⇒D⇒A运动,当Q点回到A点时,P、Q两点即停止运动,设点P、Q运动时间为t秒.
(1)当P、Q分别在AB边和BC边上运动时,设以P、B、Q为顶点的三角形面积为s,请写出s关于t的函数解析式及自变量t的取值范围;
(2)在整个运动过程中,t取何值时,PQ与BD垂直?
查看答案
(2004•山西)已知二次函数y=
x
2+bx+c的图象经过点A(-3,6),并与x轴交于点B(-1,0)和点C,顶点为P.
(1)求这个二次函数的解析式,并在下面的坐标系中画出该二次函数的图象;
(2)设D为线段OC上的一点,满足∠DPC=∠BAC,求点D的坐标;
(3)在x轴上是否存在一点M,使以M为圆心的圆与AC、PC所在的直线及y轴都相切?如果存在,请求出点M的坐标;若不存在,请说明理由.
查看答案
(2004•陕西)如图,在Rt△ABC中,∠ACB=90°,BC>AC,以斜边AB所在直线为x轴,以斜边AB上的高所在直线为y轴,建立直角坐标系,若OA
2+OB
2=17,且线段OA、OB的长度是关于x的一元二次方程x
2-mx+2(m-3)=0的两个根.
(1)求C点的坐标;
(2)以斜边AB为直径作圆与y轴交于另一点E,求过A、B、E三点的抛物线的解析式,并画出此抛物线的草图;
(3)在抛物线上是否存在点P,使△ABP与△ABC全等?若存在,求出符合条件的P点的坐标;若不存在,说明理由.
查看答案
(2004•上海)数学课上,老师提出:
如图,在平面直角坐标系中,O为坐标原点,A点的坐标为(1,0),点B在x轴上,且在点A的右侧,AB=OA,过点A和B作x轴的垂线,分别交二次函数y=x
2的图象于点C和D,直线OC交BD于点M,直线CD交y轴于点H,记点C、D的横坐标分别为x
C、x
D,点H的纵坐标为y
H.
同学发现两个结论:
①S
△CMD:S
梯形ABMC=2:3 ②数值相等关系:x
C•x
D=-y
H(1)请你验证结论①和结论②成立;
(2)请你研究:如果上述框中的条件“A的坐标(1,0)”改为“A的坐标(t,0)(t>0)”,其他条件不变,结论①是否仍成立(请说明理由);
(3)进一步研究:如果上述框中的条件“A的坐标(1,0)”改为“A的坐标(t,0)(t>0)”,又将条件“y=x
2”改为“y=ax
2(a>0)”,其他条件不变,那么x
C、x
D与y
H有怎样的数值关系?(写出结果并说明理由)
查看答案