(2004•金华)如图,已知抛物线经过点A(-3,0),B(0,3),C(2,0)三点.
(1)求此抛物线的解析式;
(2)如果点D(1,m)在这条抛物线上,求m的值的点D关于这条抛物线对称轴的对称点E的坐标,并求出tan∠ADE的值.
考点分析:
相关试题推荐
(2004•荆门)如图,在直角坐标系中,以点P(1,-1)为圆心,2为半径作圆,交x轴于A、B两点,抛物线y=ax
2+bx+c(a>0)过点A、B,且顶点C在⊙P上.
(1)求⊙P上劣弧AB的长;
(2)求抛物线的解析式;
(3)在抛物线上是否存在一点D,使线段OC与PD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.
查看答案
(2004•丽水)如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么
(1)设△POQ的面积为y,求y关于t的函数解析式;
(2)当△POQ的面积最大时,将△POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由;
(3)当t为何值时,△POQ与△AOB相似.
查看答案
(2004•聊城)如图,矩形ABCD中,AB=6,BC=4.
(1)画出以矩形的两条对称轴为坐标轴(x轴平行于AB)的平面直角坐标系,并写出点A,BC的中点E,DC的中点F的坐标;
(2)求过点A,E,F三点的抛物线的解析式,并写出此抛物线的顶点坐标.
查看答案
(2004•龙岩)如图,已知抛物线C:y=-
x
2+
x+3与x轴交于点A、B两点,过定点的直线l:y=
x-2(a≠0)交x轴于点Q.
(1)求证:不论a取何实数(a≠0)抛物线C与直线l总有两个交点;
(2)写出点A、B的坐标:A(______)、B(______)及点Q的坐标:Q(______)(用含a的代数式表示);并依点Q坐标的变化确定:当______时(填上a的取值范围),直线l与抛物线C在第一象限内有交点;
(3)设直线l与抛物线C在第一象限内的交点为P,是否存在这样的点P,使得∠APB=90°?若存在,求出此时a的值;不存在,请说明理由.
查看答案
(2004•泸州)如图,半径为6.5的⊙O′经过原点O,并且与x轴、y轴分别交于A、B两点,线段OA、OB(OA>OB)的长分别是方程x
2+kx+60=0的两根.
(1)求A、B两点的距离;
(2)求点A和点B的坐标;
(3)已知点C在劣弧OA上,连接BC交OA于D,当OC
2=CD•BC时,求点C的坐标;
(4)在⊙O′上是否存在点P,使△ABD的面积等于△POD的面积,即S
△ABD=S
△POD?若存在,请求出点P的坐标;如果不存在,请说明理由.注:抛物线y=ax
2+bx+c(a≠0)的顶点为(-
)
查看答案