满分5 > 初中数学试题 >

(2004•吉林)已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)...

(2004•吉林)已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是manfen5.com 满分网,与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.
(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的解析式:
伴随抛物线的解析式 ______,伴随直线的解析式 ______
(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3,则这条抛物线的解析式是 ______
(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;
(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件.
(1)先根据抛物线的解析式求出其顶点P和抛物线与y轴的交点M的坐标.然后根据M的坐标用顶点式二次函数通式设伴随抛物线的解析式然后将P点的坐标代入抛物线的解析式中即可求出伴随抛物线的解析式.根据M,P两点的坐标即可求出直线PM的解析式; (2)由题意可知:伴随抛物线的顶点坐标是抛物线与y轴交点坐标,伴随抛物线与伴随直线的交点(与y轴交点除外)是抛物线的顶点,据此可求出抛物线的解析式; (3)方法同(1); (4)本题要考虑的a、b、c满足的条件有: 抛物线和伴随抛物线都与x轴有两个交点,因此△>0,① 由于抛物线L中,x2>x1>0,因此抛物线的对称轴x>0,两根的积大于0.② 根据两抛物线的解析式分别求出AB、CD的长,根据AB=CD可得出另一个需满足的条件…③综合这三种情况即可得出所求的a、b、c需满足的条件. 【解析】 (1)y=-2x2+1,y=-2x+1; (2)y=x2-2x-3; (3)∵伴随抛物线的顶点是(0,c), ∵设它的解析式为y=m(x-0)2+c(m≠0), ∵此抛物线过P(-,), ∴=m•(-)2+c, 解得m=-a, ∴伴随抛物线解析式为y=-ax2+c; 设伴随直线解析式为y=kx+c(k≠0), P(-,)在此直线上, ∴, ∴k=, ∴伴随直线解析式为y=x+c; (4)∵抛物线L与x轴有两交点, ∴△1=b2-4ac>0, ∴b2>4ac; ∵x2>x1>0, ∴x2+x1=->0,x1•x2=>0, ∴ab<0,ac>0. 对于伴随抛物线有y=-ax2+c,有△2=0-(-4ac)=4ac>0,由-ax2+c=0,得x=±. ∴C(-,0),D(,0),CD=2, 又AB=x2-x1====, ∵AB=CD,则有:2=,即b2=8ac, 综合b2=8ac,b2-4ac>0,ab<0,ac>0 可得a、b、c需满足的条件为: b2=8ac且ab<0(或b2=8ac且bc<0).
复制答案
考点分析:
相关试题推荐
(2004•济宁)已知抛物线y=x2-(2m-1)x+4m-6.
(1)试说明对于每一个实数m,抛物线都经过x轴上的一个定点;
(2)设抛物线与x轴的两个交点A(x1,0)和B(x2,0)(x1<x2)分别在原点的两侧,且A、B两点间的距离小于6,求m的取值范围;
(3)抛物线的对称轴与x轴交于点Cmanfen5.com 满分网,在(2)的条件下,试判断是否存在m的值,使经过点C及抛物线与x轴的一个交点的⊙M与y轴的正半轴相切于点D,且被x轴截得的劣弧与manfen5.com 满分网是等弧?若存在,求出所有满足条件的m的值;若不存在,说明理由.
查看答案
(2004•嘉兴)如图,Rt△OAB的斜边OA在x轴的正半轴上,直角的顶点B在第一象限内,已知点A(10,0),△OAB的面积为20.
(1)求B点的坐标;
(2)求过O、B、A三点抛物线的解析式;
(3)判断该抛物线的顶点P与△OAB的外接圆的位置关系,并说明理由.

manfen5.com 满分网 查看答案
(2004•金华)如图,已知抛物线经过点A(-3,0),B(0,3),C(2,0)三点.
(1)求此抛物线的解析式;
(2)如果点D(1,m)在这条抛物线上,求m的值的点D关于这条抛物线对称轴的对称点E的坐标,并求出tan∠ADE的值.

manfen5.com 满分网 查看答案
(2004•荆门)如图,在直角坐标系中,以点P(1,-1)为圆心,2为半径作圆,交x轴于A、B两点,抛物线y=ax2+bx+c(a>0)过点A、B,且顶点C在⊙P上.
(1)求⊙P上劣弧AB的长;
(2)求抛物线的解析式;
(3)在抛物线上是否存在一点D,使线段OC与PD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2004•丽水)如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么
(1)设△POQ的面积为y,求y关于t的函数解析式;
(2)当△POQ的面积最大时,将△POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由;
(3)当t为何值时,△POQ与△AOB相似.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.