满分5 > 初中数学试题 >

(2004•长沙)已知两点O(0,0)、B(0,2),⊙A过点B且与x轴分别相交...

(2004•长沙)已知两点O(0,0)、B(0,2),⊙A过点B且与x轴分别相交于点O、C,⊙A被y轴分成段两圆弧,其弧长之比为3:1,直线l与⊙A切于点O,抛物线的顶点在直线l上运动.
(1)求⊙A的半径;
(2)若抛物线经过O、C两点,求抛物线的解析式;
(3)过l上一点P的直线与⊙A交于C、E两点,且PC=CE,求点E的坐标;
(4)若抛物线与x轴分别相交于C、F两点,其顶点P的横坐标为m,求△PFC的面积关于m的函数解析式.

manfen5.com 满分网
(1)根据,⊙A被y轴分成段两圆弧,其弧长之比为3:1,可知弦OB所对的圆心角的度数为90°,即三角形OAB为等腰直角三角形,根据斜边OB长为2,因此圆A的半径应该是; (2)本题要分两种情况进行求【解析】 圆A的圆心在第一象限时,那么C点的坐标应是(2,0), 圆A的圆心在第二象限时,C点的坐标应该是(-2,0), 因此可设抛物线的解析式为y=ax(x-2)或y=ax(x+2).已知顶点坐标在直线l上,由于l与圆相切,在(1)已经得出∠BOA=45°,因此直线l与y轴的夹角为45°,那么直线l的解析式为y=x或y=-x.根据抛物线的对称性和O,C的坐标可知,抛物线的对称轴为x=1或x=-1,将横坐标代入直线l中即可求出顶点坐标,然后将其代入抛物线的解析式中即可得出所求的结果; (3)本题可根据切割线定理求解,先根据直线l的解析式设出P点的坐标,如(m,-m)(m>0)那么OP=m,根据切割线定理有OP2=PC•PE=2PC2=2m2,因此PC=m,由此可得出PC与P的纵坐标的绝对值相同,即PC⊥x轴,因此m=OC=2.即可得出P点的坐标;(另外一种情况,即当直线l的解析式为y=x时,解法同上) (4)已知了P点的横坐标为m,即抛物线的对称轴为x=m,可据此求出FC的长,然后将m代入抛物线的解析式中求出P点的纵坐标,即可得出三角形的高,然后根据三角形的面积计算公式即可求得S,m的函数关系式.(本题要注意的线段的长不能为负数,因此要根据m的不同的取值范围进行分类讨论) 【解析】 (1) 由弧长之比为3:1, 可得∠BAO=90°,(1分) 再由AB=AO=r,且OB=2, 得r=; (2)⊙A的切线l过原点,可设l为y=kx, 任取l上一点(b,kb),由l与y轴夹角为45°, 可得:b=-kb或b=kb,得k=-1或k=1, ∴直线l的解析式为y=-x或y=x 又由r=,易得C(2,0)或C(-2,0) 由此可设抛物线解析式为y=ax(x-2)或y=ax(x+2) 再把顶点坐标代入l的解析式中得a=1 ∴抛物线为y=x2-2x或y=x2+2x; (3)当l的解析式为y=-x时,由P在l上, 可设P(m,-m)(m>0) 过P作PP′⊥x轴于P′, ∴OP′=|m|,PP′=|-m|, ∴OP==2m2, 又由切割线定理可得:OP2=PC•PE,且PC=CE, 得PC=C′E=m=PP′ ∴C与P′为同一点,即PE⊥x轴于C, ∴m=-2,E(2,2) 同理,当l的解析式为y=x时,m=-2,E(-2,2); (4)若C(2,0),此时l为y=-x, ∵P与点O、点C不重合, ∴m≠0且m≠2, 当m<0时,FC=2(2-m),高为|yp|即为-m, ∴S==m2-2m. 同理当0<m<2时,S=-m2+2m;当m>2时,S=m2-2m; ∴S=., 又若C(-2,0), 此时l为y=x,同理可得;S=..
复制答案
考点分析:
相关试题推荐
(2004•朝阳区)已知抛物线y=ax2+(manfen5.com 满分网+3a)x+4与x轴交于A、B两点,与y轴交于点C.是否存在实数a,使得△ABC为直角三角形?若存在,请求出a的值;若不存在,请说明理由.
查看答案
(2004•郴州)已知:如图,等腰梯形ABCD的边BC在x轴上,点A在y轴的正方向上,A(0,6),D(4,6),且AB=2manfen5.com 满分网
(1)求点B的坐标;
(2)求经过B、D两点的抛物线y=ax2+bx+6的解析式;
(3)在(2)中所求的抛物线上是否存在一点P,使得manfen5.com 满分网?若存在,请求出该点坐标,若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2004•四川)已知抛物线y=ax2+bx+c(a≠0)与x轴交于不同的两点A和B(4,0),与y轴交于点C(0,8),其对称轴为x=1.
(1)求此抛物线的解析式;
(2)过A、B、C三点作⊙O′与y轴的负半轴交于点D,求经过原点O且与直线AD垂直(垂足为E)的直线OE的方程;
(3)设⊙O′与抛物线的另一个交点为P,直线OE与直线BC的交点为Q,直线x=m与抛物线的交点为R,直线x=m与直线OE的交点为S.是否存在整数m,使得以点P、Q、R、S为顶点的四边形为平行四边形?若存在,求出m的值;若不存在,请说明理由.
查看答案
(2004•大连)阅读材料,解答问题.
材料:“小聪设计的一个电子游戏是:一电子跳蚤从这P1(-3,9)开始,按点的横坐标依次增加1的规律,在抛物线y=x2上向右跳动,得到点P2、P3、P4、P5…(如图1所示).过P1、P2、P3分别作P1H1、P2H2、P3H3垂直于x轴,垂足为H1、H2、H3,则S△P1P2P3=S梯形P1H1H3P3-S梯形P1H1H2P2-S梯形P2H2H3P3=manfen5.com 满分网(9+1)×2-manfen5.com 满分网(9+4)×1-manfen5.com 满分网(4+1)×1,即△P1P2P3的面积为1.”
问题:
(1)求四边形P1P2P3P4和P2P3P4P5的面积(要求:写出其中一个四边形面积的求解过程,另一个直接写出答案);
(2)猜想四边形Pn-1PnPn+1Pn+2的面积,并说明理由(利用图2);
(3)若将抛物线y=x2改为抛物线y=x2+bx+c,其它条件不变,猜想四边形Pn-1PnPn+1Pn+2的面积(直接写出答案).
manfen5.com 满分网
查看答案
(2004•大连)如图,抛物线y=-x2+5x+n经过点A(1,0),与y轴交于点B.
(1)求抛物线的解析式;
(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.