满分5 > 初中数学试题 >

(2004•无锡)已知:如图,Rt△ABC中,∠B=90°,∠A=30°,BC=...

(2004•无锡)已知:如图,Rt△ABC中,∠B=90°,∠A=30°,BC=6cm.点O从A点出发,沿AB以每秒manfen5.com 满分网cm的速度向B点方向运动,当点O运动了t秒(t>0)时,以O点为圆心的圆与边AC相切于点D,与边AB相交于E、F两点.过E作EG⊥DE交射线BC于G.
(1)若E与B不重合,问t为何值时,△BEG与△DEG相似?
(2)问:当t在什么范围内时,点G在线段BC上当t在什么范围内时,点G在线段BC的延长线上?
(3)当点G在线段BC上(不包括端点B、C)时,求四边形CDEG的面积S(cm2)关于时间t(秒)的函数关系式,并问点O运动了几秒钟时,S取得最大值最大值为多少?

manfen5.com 满分网
(1)连接OD,DF.那么OD⊥AC,则∠AOD=60°,∠AED=30°.由于∠DEG=90°,因此∠BEG=60°,因此本题可分两种情况进行讨论: ①当∠EDG=60°,∠DGE=30°时,∠BGD=∠BGE+∠EGD=60°.这样∠BGD和∠ACB相等,那么G和C重合. ②当∠DGE=60°时,可在直角△AOD中,根据∠A的度数和AO的长表示出AD的长,也就能表示出CD的长,由于∠A=∠AED=30°,那么AD=DE,可在直角△DEG中,用AD的长表示出DG,进而根据DG∥AB得出的关于CD,AD,DG,AB的比例关系式即可求出此时t的值. (2)本题可先求出BG的表达式,然后令BG>BC,即可得出G在BC延长线上时t的取值范围. (3)由于四边形CGED不是规则的四边形,因此其面积可用△ABC的面积-△ADE的面积-△BEG的面积来求得.在前两问中已经求得AD,AE,BE,BG的表达式,那么就不难得出这三个三角形的面积.据此可求出S,t的函数关系式.根据函数的性质和自变量的取值范围即可求出S的最大值及对应的t的值. 【解析】 (1)连接OD,DF. ∵AC切⊙O于点D, ∴OD⊥AC. 在Rt△OAD中,∠A=30°,OA=t, ∴OD=OF=t,AD=OA•cosA=. 又∵∠FOD=90°-30°=60°, ∴∠AED=30°,∴AD=ED=. ∵DE⊥EG, ∴∠BEG=60°, △BEG与△DEG相似. ∵∠B=∠GED=90°, ①当∠EGD=30°, CE=2BE=2(6-t)则∠BGD=60°=∠ACB,此时G与C重合, DE==AD,CD=12-,BE=6-t, ∵△BEG∽△DEC, ∴=, ∴=, t=; ②当∠EGD=60°. ∴DG⊥BC,DG∥AB. 在Rt△DEG中,∠DEG=90°,DE=, ∴DG=t. 在Rt△ABC中,∠A=30°,BC=6, ∴AC=12,AB=6, ∴CD=12-. ∵DG∥AB, ∴解得t=. 答:当t为或时,△BEG与△EGD相似; (2)∵AC切⊙O于点D, ∴OD⊥AC. 在Rt△OAD中,∠A=30°,OA=t, ∴∠AED=30°,∴DE⊥EG, ∴∠BEG=60°. 在Rt△ABC中,∠B=90°,∠A=30°,BC=6, ∴AB=6,BE=6-t. Rt△BEG中,∠BEG=60°, ∴BG=BE•tan60°=18-t. 当0≤18-t≤6,即≤t≤4时,点G在线段BC上; 当18-t>6,即0<t<时,点G在线段BC的延长线上; (3)过点D作DM⊥AB于M. 在Rt△ADM中,∠A=30°, ∴DM=AD=t. ∴S=S△ABC-S△AED-S△BEG =36-t2-27t =-(t-)2+(<t<4). 所以当t=时,s取得最大值,最大值为.
复制答案
考点分析:
相关试题推荐
(2004•北京)已知:在平面直角坐标系xOy中,过点P(0,2)任作一条与抛物线y=ax2(a>0)交于两点的直线,设交点分别为A、B.若∠AOB=90°.
(1)判断A、B两点纵坐标的乘积是否为一个确定的值,并说明理由;
(2)确定抛物线y=ax2(a>0)的解析式;
(3)当△AOB的面积为4manfen5.com 满分网时,求直线AB的解析式.
查看答案
(2004•长春)已知二次函数y=x2-8x+15的图象交x轴于A、B两点,交y轴于点C.请结合这个函数的图象解决下列问题:
(1)求△ABC的面积;
(2)点P在这个二次函数的图象上运动,能使△PAB的面积等于1个平方单位的P点共有多少个?请直接写出满足条件的P点坐标;
(3)在(2)中,使△PAB的面积等于2个平方单位的P点是否存在?如果存在,写出P点的个数;如果不存在,请说明理由.
查看答案
(2004•长沙)已知两点O(0,0)、B(0,2),⊙A过点B且与x轴分别相交于点O、C,⊙A被y轴分成段两圆弧,其弧长之比为3:1,直线l与⊙A切于点O,抛物线的顶点在直线l上运动.
(1)求⊙A的半径;
(2)若抛物线经过O、C两点,求抛物线的解析式;
(3)过l上一点P的直线与⊙A交于C、E两点,且PC=CE,求点E的坐标;
(4)若抛物线与x轴分别相交于C、F两点,其顶点P的横坐标为m,求△PFC的面积关于m的函数解析式.

manfen5.com 满分网 查看答案
(2004•朝阳区)已知抛物线y=ax2+(manfen5.com 满分网+3a)x+4与x轴交于A、B两点,与y轴交于点C.是否存在实数a,使得△ABC为直角三角形?若存在,请求出a的值;若不存在,请说明理由.
查看答案
(2004•郴州)已知:如图,等腰梯形ABCD的边BC在x轴上,点A在y轴的正方向上,A(0,6),D(4,6),且AB=2manfen5.com 满分网
(1)求点B的坐标;
(2)求经过B、D两点的抛物线y=ax2+bx+6的解析式;
(3)在(2)中所求的抛物线上是否存在一点P,使得manfen5.com 满分网?若存在,请求出该点坐标,若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.