满分5 > 初中数学试题 >

(2004•武汉)已知:如图,⊙O1与⊙O2内切于P点,过P点作直线交⊙O1于A...

(2004•武汉)已知:如图,⊙O1与⊙O2内切于P点,过P点作直线交⊙O1于A点,交⊙O2于B点,C为⊙O1上一点,过B点作⊙O2的切线交直线AC于Q点.
(1)求证:AC•AQ=AP•AB;
(2)若将两圆内切改为外切,其它条件不变,(1)中结论是否仍然成立?______请你画出图形,并证明你的结论.
manfen5.com 满分网
(1)证明线段的乘积相等,可以转化为证明线段成比例,即证明△ABQ∽△ACP,围绕证明相似找条件; (2)仍成立,仿照(1)的证明方法. (1)证明:过P点作两圆的公切线MN,与QB的延长线交于N点,连接PC, ∵BQ、MN是⊙O2的切线,∴NB=NP, ∴∠QBA=∠NBP=∠NPB, 又∵MN是⊙O2的切线, ∴∠PCA=∠NPB,可得∠QBA=∠PCA,又∠A=∠A, ∴△ABQ∽△ACP, ∴=,即AC•AQ=AP•AB; (2)【解析】 结论仍成立. 证明:过点P作两圆的公切线MN,与BQ交于N点,连接PC, 因为BQ是圆的切线,设MN与BQ交于点E, 则根据切线长定理得到NP=NB, ∴∠NPB=∠QBP=∠APM, 又∵∠APM=∠ACP, ∴∠QBP=∠ACP, ∴△ABQ∽△ACP, ∴AC•AQ=AP•AB仍成立.
复制答案
考点分析:
相关试题推荐
(2004•宿迁)如图1,已知⊙O1、⊙O2内切于点P,⊙O1的弦AB交⊙O2于C、D两点,连接PA、PC、PD、PB,设PB与⊙O2交于点E.
(Ⅰ)求证:PA•PE=PC•PD;
(Ⅱ)若将题中“⊙O1、⊙O2内切于点P”改为“⊙O1、⊙O2外切于点P”,其它条件不变,如图2,那么(Ⅰ)中的结论是否成立?请说明理由.
manfen5.com 满分网
查看答案
(2004•淄博)已知⊙O的半径为R,⊙P的半径为r(r<R),且⊙P的圆心P在⊙O上.设C是⊙P上一点,过点C与⊙P相切的直线交⊙O于A、B两点.
(1)若点C在线段OP上,(如图1).求证:PA•PB=2Rr;
(2)若点C不在线段OP上,但在⊙O内部如图(2).此时,(1)中的结论是否成立?若成立,请给予证明;若不成立,说明理由;
(3)若点C在⊙O的外部,如图(3).此时,PA•PB与R,r的关系又如何?请直接写出,不要求给予证明或说明理由.
manfen5.com 满分网
查看答案
(2004•郑州)如图,∠BAC=90°,AC=AB,直线l与以AB为直径的圆相切于点B,点E是圆上异于A、B的任意一点.直线AE与l相交于点D.
(1)如果AD=10,BD=6,求DE的长;
(2)连接CE,过E作CE的垂线交直线AB于F.当点E在什么位置时,相应的F位于线段AB上、位于BA的延长线上、位于AB的延长线上(写出结果,不要求证明).无论点E如何变化,总有BD=BF.请你就上述三种情况任选一种说明理由.

manfen5.com 满分网 查看答案
(2004•天津)如图,已知PAB是⊙O的割线,AB为⊙O的直径,PC为⊙O的切线,C为切点,BD⊥PC于点D,交⊙O于点E,PA=AO=OB=1.
(Ⅰ)求∠P的度数;
(Ⅱ)求DE的长.

manfen5.com 满分网 查看答案
(2004•无锡)已知:如图,四边形ABCD内接于⊙O,过点A的切线与CD的延长线交于E,且∠ADE=∠BDC.
(1)求证:△ABC为等腰三角形;
(2)若AE=6,BC=12,CD=5,求AD的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.