满分5 > 初中数学试题 >

(2004•丽水)已知⊙O1与⊙O2相切于点P,它们的半径分别为R、r.一直线绕...

(2004•丽水)已知⊙O1与⊙O2相切于点P,它们的半径分别为R、r.一直线绕P点旋转,与⊙O1、⊙O2分别交于点A、B(点P、B不重合),探索规律:
(1)如图1,当⊙O1与⊙O2外切时,探求manfen5.com 满分网与半径R、r之间的关系式,请证明你的结论;
(2)如图2,当⊙O1与⊙O2内切时,第(1)题探求的结论是否成立?为什么?

manfen5.com 满分网
要求与半径R、r之间的关系式,证明△O1AP∽△O2BP是关键,注意两圆的位置关系. 【解析】 (1)当⊙O1与⊙O2外切时,(3分) 证明:连接O1A,O2B ∵两圆外切, ∴O1、P、O2三点共线 ∵△O1AP和△O2BP是等腰三角形,∠O1PA=∠BPO2, ∴∠O1AP=∠O2BP ∴△O1AP∽△O2BP ∴;(4分) (2)当⊙O1与⊙O2内切时,仍然成立(2分) 证明:连接O1A,O2B,同理可证△PO1A∽△PO2B, ∴仍然成立.(3分) (注:能指出当动直线AB经过两圆的圆心时,PA=2R,PB=2r,∴,奖励1分.)
复制答案
考点分析:
相关试题推荐
(2004•聊城)请解决下列问题:
(1)如图甲,⊙O1与⊙O2外切于点P,AB是⊙O1的弦,分别以A、B为端点过P作射线交⊙O2于A′、B′,图中是否存在相似三角形?请给予说明;
(2)如图乙,相交于C、P两点,AB是⊙O1的弦,分别以A、B为端点过P作射线交⊙O2于A′、B′,图中是否存在分别以AB、A′B′为一边的两个相似三角形?请给予说明.
manfen5.com 满分网
查看答案
(2004•内江)如图,⊙O1与⊙O2外切于点P,AB是两圆外公切线,A、B为切点,AB与O1O2的延长线交于C点,在AP延长线上有一点E,满足manfen5.com 满分网,PE交⊙O2于D.
(1)求证:AC⊥EC;
(2)求证:PC=EC;
(3)若AP=4,PD=manfen5.com 满分网,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
(2004•武汉)已知:如图,⊙O1与⊙O2内切于P点,过P点作直线交⊙O1于A点,交⊙O2于B点,C为⊙O1上一点,过B点作⊙O2的切线交直线AC于Q点.
(1)求证:AC•AQ=AP•AB;
(2)若将两圆内切改为外切,其它条件不变,(1)中结论是否仍然成立?______请你画出图形,并证明你的结论.
manfen5.com 满分网
查看答案
(2004•宿迁)如图1,已知⊙O1、⊙O2内切于点P,⊙O1的弦AB交⊙O2于C、D两点,连接PA、PC、PD、PB,设PB与⊙O2交于点E.
(Ⅰ)求证:PA•PE=PC•PD;
(Ⅱ)若将题中“⊙O1、⊙O2内切于点P”改为“⊙O1、⊙O2外切于点P”,其它条件不变,如图2,那么(Ⅰ)中的结论是否成立?请说明理由.
manfen5.com 满分网
查看答案
(2004•淄博)已知⊙O的半径为R,⊙P的半径为r(r<R),且⊙P的圆心P在⊙O上.设C是⊙P上一点,过点C与⊙P相切的直线交⊙O于A、B两点.
(1)若点C在线段OP上,(如图1).求证:PA•PB=2Rr;
(2)若点C不在线段OP上,但在⊙O内部如图(2).此时,(1)中的结论是否成立?若成立,请给予证明;若不成立,说明理由;
(3)若点C在⊙O的外部,如图(3).此时,PA•PB与R,r的关系又如何?请直接写出,不要求给予证明或说明理由.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.