满分5 > 初中数学试题 >

(2003•舟山)如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1...

(2003•舟山)如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.
(1)若PC=PD,求PB的长.
(2)试问线段AB上是否存在一点P,使PC2+PD2=4?如果存在,问这样的P点有几个并求出PB的值;如果不存在,说明理由.
(3)当点P在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少;或PC、PD具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与⊙B的位置关系,证明你的结论.

manfen5.com 满分网
(1)由于PC,PD都是切线,那么三角形ACP和PDB就都是直角三角形,那么我们可以用勾股定理来表示出PC2和PD2,由于PC=PD,那么可得出关于CA2、AP2、PB2、BD2的比例关系式,已知了AC,BD,AB的值如果我们用PB表示出AP,就能在这个比例关系式中求出PB的值; (2)方法同(1)类似只不过相等改成了PC2+PD2=4,可用(1)的方法先求出PB的长,然后根据PB的取值范围来判断有几个符合条件的值; (3)要两个三角形相似,已知的条件有∠ACP=∠BDP=90°,AC:BD=2:1,那么只要让PC:PD=2:1,就能构成三角形相似判定中两组对应边对应成比例且夹角相等的条件,两三角形相似后∠CPA=∠CPB,如果延长CP那么CP延长线与PD组成的角中,PB正好是角平分线,根据角平分线的点到角两边的距离相等,可得出B到CP延长线的距离等于半径BD的长,因此CP与⊙B也相切. 【解析】 (1)∵PC切⊙A点于C, ∴PC⊥AC, PC2=PA2-AC2, 同理PD2=PB2-BD2, ∵PC=PD, ∴PA2-AC2=PB2-BD2 设PB=x,PA=4-x代入得x2-12=(4-x)2-22, 解得x=,1<<2, 即PB的长为(PA长为>2), (2)假定存在一点P使PC2+PD2=4,设PB=x, 则PD2=x2-1 PC2=(4-x)2-22, 代入条件得(4-x)2-22+x2-1=4, 代简得2x2-8x+7=0解得x=2±, ∵P在两圆间的圆外部分, ∴1<PB<2即1<x<2, ∴满足条件的P点只有一个,这时PB=2-, (3)当PC:PD=2:1或PB=时,也有△PCA∽△PDB, 这时,在△PCA与△PDB中或, ∠C=∠D=90°, ∴△PCA∽△PDB, ∴∠BPD=∠APC=∠BPE(E在CP的延长线上), ∴B点在∠DPE的角平分线上,B到PD与PE的距离相等, ∵⊙B与PD相切, ∴⊙B也与CP的延长线PE相切.
复制答案
考点分析:
相关试题推荐
(2006•湖北)如图,已知CA、CB都经过点C,AC是⊙B的切线,⊙B交AB于点D,连接CD并延长交OA于点E,连接AF.
(1)求证:AE⊥AB;
(2)求证:DE•DC=2AD•DB;
(3)如果AE=3,BD=4,求DC的长.

manfen5.com 满分网 查看答案
(2003•广州)已知Rt△ABC中,AC=5,BC=12,∠ACB=90°,P是AB边上的动点(与点A、B不重合),Q是BC边上的动点(与点B、C不重合)
(1)如图,当PQ∥AC,且Q为BC的中点时,求线段CP的长;
(2)当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围;若不可能,请说明理由.

manfen5.com 满分网 查看答案
(2003•江西)有一长方形餐厅,长10米,宽7米,现只摆放两套同样大小的圆桌和椅子,一套圆桌和椅子占据的地面部分看成半径为1.5米的圆形(如图所示).在保证通道最狭窄处的宽度不小于0.5米的前提下,此餐厅内能否摆下三套或四套同样大小的圆桌和椅子呢?请在摆放三套和四套的两种方案中选取一种,在右下方14×20方格网内划出设计示意图.
manfen5.com 满分网
查看答案
(2003•十堰)如图,ABCD为菱形,∠ABC=β,有一个半径为r的⊙O,圆心O在菱形的内部,且到B点的距离为a,当圆心O在菱形内部运动时,⊙O的半径和圆心到B点的距离a都发生变化.
(1)当满足什么条件时,圆心O在菱形内部运动时⊙O与菱形的两边BA、BC(或BA、BC的延长线)都相切?
(2)当圆心O在菱形内部运动时,请你求出满足什么条件时⊙O与菱形的两边BA、BC(或BA、BC的延长线)都相交、相离的所有情况.

manfen5.com 满分网 查看答案
(2003•甘肃)如图,在矩形ABCD中,AB=6cm,BC=8cm,⊙O是以BC为直径的圆,点P在AD边上运动(不与A,D重合),BP交⊙O于Q,连接CQ.
(1)设线段BP的长为xcm,CQ的长为ycm.求y关于x的函数关系式和自变量x的取值范围;
(2)求当manfen5.com 满分网时,△APB的外接圆及内切圆的面积.(π≈3.14,manfen5.com 满分网≈3.16,manfen5.com 满分网≈2.83.结果精确到1cm2

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.