满分5 > 初中数学试题 >

(2003•新疆)已知:如图1,点P在⊙O外,PC是⊙O的切线、切点为C,直线P...

(2003•新疆)已知:如图1,点P在⊙O外,PC是⊙O的切线、切点为C,直线PO与⊙O相交于点A、B.
manfen5.com 满分网
(1)试探求∠BCP与∠P的数量关系;
(2)若∠A=30°,则PB与PA有什么数量关系?
(3)∠A可能等于45°吗?若∠A=45°,则过点C的切线与AB有怎样的位置关系?(图2供你解题使用)
(4)若∠A>45°,则过点C的切线与直线AB的交点P的位置将在哪里?(图3供你解题使用)
(1)根据圆周角定理可知∠BCP=∠A,由三角形内角和定理即可求出答案; (2)根据圆周角定理可知∠BCP=∠A=30°,则∠ACP=120°,∠P=30°,连接OC,则OA=OB=BP=BC,故PA=3PB; (3)若∠A不可以等于45°,根据圆周角定理可知∠1=45°,过点C的切线与AB平行; (4)若∠A>45°,则根据圆周角定理可知∠1>45°,∠PCA<45°,过点C的切线与直线AB的交点P在AB的反向延长线上. 【解析】 (1)∠BCP=∠A,∠A+∠P+∠ACB+∠BCP=180° ∵AB是⊙O的直径, ∴∠ACB=90°, ∴∠BCP=;(3分) (2)若∠A=30°, ∴∠BCP=∠A=30°, ∴∠P=30° ∴PB=BC,BC=AB⇒PB=PA或PA=3PB;(6分) (3)∠A不可以等于45°, 如图所示,当∠A=45°时,过点C的切线与AB平行;(8分) (4)若∠A>45°,则过点C的切线与直线AB的交点P在AB的反向延长线上.
复制答案
考点分析:
相关试题推荐
(2003•徐州)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,过点C的切线与AB的延长线相交于点D,AE⊥DC交DC于点E.
(1)求证:AC是∠EAB的平分线;
(2)若BD=2,DC=4,求AE和BC的长.

manfen5.com 满分网 查看答案
(2003•烟台)如图1,AB是⊙O的直径,AC是弦,直线CD切⊙O于点C,AD⊥CD,垂足为D.
(1)求证:AC2=AB•AD;
(2)若将直线CD向上平移,交⊙O于C1、C2两点,其它条件不变,可得到图2所示的图形,试探索AC1、AC2、AB、AD之间的关系,并说明理由;
(3)把直线C1D继续向上平移,使弦C1C2与直径AB相交(交点不与A、B重合),其它条件不变,请你在图3中画出变化后的图形,标好相应字母,并试着写出与(2)相应的结论,判断你的结论是否成立?若不成立,请说明理由;若成立,请给出证明.
manfen5.com 满分网
查看答案
(2003•宜昌)如图,PA切⊙O于点A,割线PBC交⊙O于B、C两点,∠APC的平分线分别交AC、AB于D、E两点.请在图中找出2对相似三角形,并从中选择一对相似三角形说明其为什么相似.

manfen5.com 满分网 查看答案
(2003•岳阳)如图:⊙O为△ABC的外接圆,∠C=60°,过C作⊙O的切线,交AB的延长线于P,∠APC的平分线和AC、BC分别相交于D、E.
(1)证明:△CDE是等边三角形;
(2)证明:PD•DE=PE•AD;
(3)若PC=7,S△PCE=manfen5.com 满分网,求作以PE、DE的长为根的一元二次方程;
(4)试判断E点是否能成为PD的中点?若能,请说明必需满足的条件,同时给出证明;若不能,请说明理由.

manfen5.com 满分网 查看答案
(2003•舟山)如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.
(1)若PC=PD,求PB的长.
(2)试问线段AB上是否存在一点P,使PC2+PD2=4?如果存在,问这样的P点有几个并求出PB的值;如果不存在,说明理由.
(3)当点P在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少;或PC、PD具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与⊙B的位置关系,证明你的结论.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.