(2003•上海)如图1所示,在正方形ABCD中,AB=1,
是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的任意一点(点E与点A、D不重合),过E作AC所在圆的切线,交边DC于点F,G为切点.
(1)当∠DEF=45°时,求证:点G为线段EF的中点;
(2)设AE=x,FC=y,求y关于x的函数解析式,并写出函数的定义域;
(3)图2所示,将△DEF沿直线EF翻折后得△D
1EF,当EF=
时,讨论△AD
1D与△ED
1F是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由.
考点分析:
相关试题推荐
(2003•绍兴)如图,BC是半圆的直径,O是圆心,P是BC延长线上一点,PA切半圆于点A,AD⊥BC于点D.
(1)若∠B=30°,问:AB与AP是否相等?请说明理由;
(2)求证:PD•PO=PC•PB;
(3)若BD:DC=4:1,且BC=10,求PC的长.
查看答案
(2003•随州)已知,⊙O与直线l相切于点C,直径AB∥l,P是l上C点左边(不包括C点)一动点,AP交⊙O于D,BP交⊙O于E,DE的延长线交l于F.
(1)当PC<AO时,如图1,线段PF与FC的大小关系是______.结合图1,证明你的结论;
(2)当PC>AO时,AP的反向延长线交⊙O于D,其它条件不变,如图2,(1)中所得结论是否仍然成立?
答:______;(不证明)
(3)如图2,当tan∠APB=
,tan∠ABE=
,AP=
时,求PF的长.
查看答案
(2003•温州)如图1,点A在⊙O外,射线AO交⊙O于F,C两点,点H在⊙O上,
=2
,D是
上的一个动点(不运动至F,H),BD是⊙O的直径,连接AB,交⊙O于点C,CD交0F于点E.且AO=BD=2.
(1)设AC=x,AB=y,求y关于x的函数解析式,并写出自变量x的取值范围;
(2)当AD与⊙O相切时(如图2),求tanB的值;
(3)当DE=DO时(如图3),求EF的长.
查看答案
(2003•无锡)已知:如图,△ABC内接于⊙O
1,以AC为直径的⊙O
2交BC于点D,AE切⊙O
1于点A,交⊙O
2于点E,连接AD、CE,若AC=7,AD=3
,tanB=
.
求:(1)BC的长;
(2)CE的长.
查看答案
(2003•武汉)已知:如图,在直角坐标系中,⊙O
1经过坐标原点,分别与x轴正半轴、y轴正半轴交于点A、B.
(1)若点O到直线AB的距离为
,且tan∠B=
,求线段AB的长;
(2)若点O到直线AB的距离为
,过点A的切线与y轴交于点C,过点O的切线交AC于点D,过点B的切线交OD于点E,求
的值;
(3)如图,若⊙O
1经过点M(2,2),设△BOA的内切圆的直径为d,试判断d+AB的值是否会发生变化,若不变,求出其值;若变化,求其变化的范围.
查看答案