(2003•吉林)关于图形变化的探讨:
(1)①例题1.如图1,AB是⊙O的直径,直线l与⊙O有一个公共点C,过A、B分别作l的垂线,垂足为E、F,则EC=CF.
②上题中,当直线l向上平行移动时,与⊙O有了两个交点C
1、C
2,其它条件不变,如图2,经过推证,我们会得到与原题相应的结论:EC
1=C
2F.
③把直线1继续向上平行移动,使弦C
1C
2与AB交于点P(P不与A,B重合).在其它条件不变的情况下,请你在图3的圆中将变化后的图形画出来,标好对应的字母,并写出与①②相应的结论等式.判断你写的结论是否成立,若不成立,说明理由,若成立,给以证明.结论______.证明结论成立或说明不成立的理由
(2)①例题2.如图4,BC是⊙O的直径.直线1是过C点的切线.N是⊙O上一点,直线BN交1于点M.过N点的切线交1于点P,则PM
2=PC
2.
②把例题2中的直线1向上平行移动,使之与⊙O相交,且与直线BN交于B、N两点之间.其它条件仍然不变,请你利用图5的圆把变化后的图形画出来,标好相应的字母,并写出与①相应的结论等积式,判断你写的结论是否成立,若不成立,说明理由,若成立,给以证明.结论______.证明结论成立或说明不成立的理由:
(3)总结:请你通过(1)、(2)的事实,用简练的语言,总结出某些几何图形的一个变化规律______.
考点分析:
相关试题推荐
(2003•吉林)如图,AB是半圆O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合),点Q在半圆O上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA的延长线于点C.
(1)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予证明;
(2)当QP⊥AB时,△QCP的形状是______三角形;
(3)由(1)、(2)得出的结论,请进一步猜想当点P在线段AM上运动到任何位置时,△QCP一定是______三角形.
查看答案
(2003•仙桃)如图,AB是⊙O的直径,弦CD⊥AB于E,弦CD、AF相交于点G,过点D作⊙O的切线交AF的延长线于M,且
.
(1)在图中找出相等的线段(直接在横线上填写,所写结论至少3组,所添辅助线段除外,不需写推理过程)______;
(2)连接AD,DF(请将图形补充完整),若AO=
,OE=
,求AD:DF的值;
(3)在满足(1)、(2)的前提下,求DM的长.
查看答案
(2002•泸州)已知,如图,AB为半圆O的直径,C为OB上一点,OC:CB=1:3,DC⊥AB交半圆O于D,过D作半圆O的切线交AB的延长线于E.
(1)若BE=12,求半圆O的半径长;
(2)在弧BD上任取一点P(不与B、D重合),连接EP并延长交弧AD于F,设PC=x,EF=y,求y关于x的函数关系式,并指出自变量x的取值范围.
查看答案
(2003•泉州)如图,△ABC中,∠BAC的平分线AD交BC于D,⊙O过点A,且和BC切于D,和AB、AC分别交于E、F.设EF交AD于G,连接DF.
(1)求证:EF∥BC;
(2)已知:DF=2,AG=3,求
的值.
查看答案
(2003•上海)如图1所示,在正方形ABCD中,AB=1,
是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的任意一点(点E与点A、D不重合),过E作AC所在圆的切线,交边DC于点F,G为切点.
(1)当∠DEF=45°时,求证:点G为线段EF的中点;
(2)设AE=x,FC=y,求y关于x的函数解析式,并写出函数的定义域;
(3)图2所示,将△DEF沿直线EF翻折后得△D
1EF,当EF=
时,讨论△AD
1D与△ED
1F是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由.
查看答案