(2003•哈尔滨)如图,⊙O
1与⊙O
2相交于A、B两点,O
1A切⊙O
2于点A,过点O;作⊙O
2的割线O
1HD经过点O
2,交AB于点E,BC是⊙O
2的直径.
(1)求证:O
1E•AC=AE•AB;
(2)若O
1E=1,AC=8,求O
1H的长.
考点分析:
相关试题推荐
(2003•河北)如图:MN为⊙O的切线,A为切点,过点A作AP⊥MN交⊙O的弦BC于点P,若PA=2cm,PB=5cm,PC=3cm.求⊙O的直径.
查看答案
(2003•淮安)已知:⊙O
1与⊙O
2相交于点A、B,AC切⊙O
2于点A,交⊙O
1于点C.直线EF过点B,交⊙O
1于点E,交⊙O
2于点F.
(1)设直线EF交线段AC于点D(如图1).
①若ED=12,DB=25,BF=11,求DA和DC的长;
②求证:AD•DE=CD•DF;
(2)当直线EF绕点B旋转交线段AC的延长线于点D时(如图2),试问AD•DE=CD•DF是否仍然成立?证明你的结论.
查看答案
(2003•黄石)如图,过Rt△ABC的直角顶点C作圆O,圆O与△ABC的两边AB、BC分别相切于D、C,并交AC边于E.在优弧DE上任取一点F,连接FE、FD,若BC=a,cos∠EFD=
.
①求证:AD=BD;
②试求∠EDA的大小;
③计算圆O的面积.
查看答案
(2003•吉林)关于图形变化的探讨:
(1)①例题1.如图1,AB是⊙O的直径,直线l与⊙O有一个公共点C,过A、B分别作l的垂线,垂足为E、F,则EC=CF.
②上题中,当直线l向上平行移动时,与⊙O有了两个交点C
1、C
2,其它条件不变,如图2,经过推证,我们会得到与原题相应的结论:EC
1=C
2F.
③把直线1继续向上平行移动,使弦C
1C
2与AB交于点P(P不与A,B重合).在其它条件不变的情况下,请你在图3的圆中将变化后的图形画出来,标好对应的字母,并写出与①②相应的结论等式.判断你写的结论是否成立,若不成立,说明理由,若成立,给以证明.结论______.证明结论成立或说明不成立的理由
(2)①例题2.如图4,BC是⊙O的直径.直线1是过C点的切线.N是⊙O上一点,直线BN交1于点M.过N点的切线交1于点P,则PM
2=PC
2.
②把例题2中的直线1向上平行移动,使之与⊙O相交,且与直线BN交于B、N两点之间.其它条件仍然不变,请你利用图5的圆把变化后的图形画出来,标好相应的字母,并写出与①相应的结论等积式,判断你写的结论是否成立,若不成立,说明理由,若成立,给以证明.结论______.证明结论成立或说明不成立的理由:
(3)总结:请你通过(1)、(2)的事实,用简练的语言,总结出某些几何图形的一个变化规律______.
查看答案
(2003•吉林)如图,AB是半圆O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合),点Q在半圆O上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA的延长线于点C.
(1)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予证明;
(2)当QP⊥AB时,△QCP的形状是______三角形;
(3)由(1)、(2)得出的结论,请进一步猜想当点P在线段AM上运动到任何位置时,△QCP一定是______三角形.
查看答案