满分5 > 初中数学试题 >

(2003•镇江)已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于...

(2003•镇江)已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G交BC的延长线于F.
(1)求证:AE=BE;
(2)求证:FE是⊙O的切线;
(3)若BC=6,FE=4,求FC和AG的长.

manfen5.com 满分网
(1)连接CE和OE,因为BC是直径,所以∠BEC=90°,即CE⊥BE;再根据等腰三角形三线合一定理,可以知道CE也是AB的中线,即AE=BE. (2)根据已知得OE是△ABC的中线,从而得到∠OEC=∠ECG,进而可得到∠OEF=90°,那么就证出EF是切线. (3)直接利用切割线定理求出CF的长,利用OE∥AC,可以得到比例线段,求出CG的长,那么AG=AC-CG,AG就可求得. (1)证明:连接CE和OE; ∵BC是直径, ∴∠BEC=90°, ∴CE⊥AB; 又∵AC=BC, ∴BE=AE. (2)证明:∵BE=AE,OB=OC, ∴OE是△ABC的中位线, ∴OE∥AC,AC=2OE=6. ∴∠OEC=∠ACE. 又∵EG⊥AC, ∴∠CEG+∠ACE=90°, ∴∠CEG+∠OEC=90°, ∴∠OEF=90°. ∴EF是⊙O的切线. (3)【解析】 ∵EF是⊙O的切线, ∴EF2=CF•BF. 设CF=x,则有x(x+6)=16, 解得,x1=2,x2=-8(不合题意,舍去)那么CF=2; ∵OE∥AC, ∴=, ∴=, ∴CG=. ∴AG=AC-CG=6-=.
复制答案
考点分析:
相关试题推荐
(2005•常德)如图,AB是⊙O的直径,BC是⊙O的弦,⊙O的割线PDE垂直AB于点F,交BC于点G,连接PC,∠BAC=∠BCP,求解下列问题:
(1)求证:CP是⊙O的切线.
(2)当∠ABC=30°,BG=manfen5.com 满分网,CG=manfen5.com 满分网时,求以PD、PE的长为两根的一元二次方程.
(3)若(1)的条件不变,当点C在劣弧AD上运动时,应再具备什么条件可使结论BG2=BF•BO成立?试写出你的猜想,并说明理由.

manfen5.com 满分网 查看答案
(2008•芜湖)在Rt△ABC中,BC=9,CA=12,∠ABC的平分线BD交AC与点D,DE⊥DB交AB于点E.
(1)设⊙O是△BDE的外接圆,求证:AC是⊙O的切线;
(2)设⊙O交BC于点F,连接EF,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
(2003•滨州)如图,AB是⊙O的弦,AC切⊙O于点A,AC=AB,CB交⊙O于点D,点E为弧AB的中点,连接AD,在不添加辅助线的情况下.
(1)找出图中存在的全等三角形,并给出证明;
(2)图中存在你所学过的特殊四边形吗?如果存在,请你找出来并给出证明.

manfen5.com 满分网 查看答案
(2003•大连)已知:如图1,给出下列6个论断,①AB是⊙O1的直径;②EC是⊙O1的切线;③AC是⊙O2的直径;④BC•EC=DE•BD;⑤DE∥BC;⑥DE•BC=2CE2
(1)将6个论断中的3个作为题设,2个论断作为结论,写出一个真命题,并加以证明;
(2)如果AB不是⊙O2直径(如图2),你能否再从其余5个论断中选取一个论断作为题设,一个论断作为结论,使其成为真命题(不要求证明)?若能,请写出两个;若不能,请你再添加一个条件,写出两个真命题.manfen5.com 满分网
查看答案
(2003•大连)如图,PA是⊙O的切线,切点为A,PCB是⊙O的割线,交⊙O于C、B两点,半径OD⊥BC,垂足为E,AD交PB于点F,BF=PF.
(1)求证:PA=PF;
(2)若CF=1,求切线PA的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.