(2003•大连)问题:要将一块直径为2m的半圆形铁皮加工成一个圆柱的两个底面和一个圆锥的底面.
操作:
方案一:在图1中,设计一个圆锥底面最大,半圆形铁皮得以最充分利用的方案(要求:画示意图);
方案二:在图2中,设计一个圆柱两个底面最大,半圆形铁皮得以最充分利用的方案(要求:画示意图).
探究:
(1)求方案一中圆锥底面的半径;
(2)求方案二中半圆圆心为O,圆柱两个底面圆心为O
1、O
2,圆锥底面的圆心为O
3,试判断以O
1、O
2、O
3、O为顶点的四边形是什么样的特殊四边形,并加以证明.
考点分析:
相关试题推荐
(2003•淮安)如图,扇形OAB的圆心角为120°,半径为6cm.
(1)请用尺规作出扇形的对称轴(不写作法,但应保留作图痕迹);
(2)若将此扇形围成一个圆锥的侧面(不计接缝),求圆锥的高.
查看答案
(2003•宁波)已知扇形的圆心角为120°,面积为300πcm
2.
(1)求扇形的弧长;
(2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少?
查看答案
(2003•宁夏)高晗和吴逸君两同学合作,将半径为1m、圆心角为90°的扇形薄铁板围成一个圆锥筒,在计算圆锥的容积(接缝忽略不计)时,吴逸君认为圆锥的高就等于扇形的圆心O到弦AB的距离OC(如图),高晗说这样计算不正确.你同意谁的说法?把正确的计算过程写出来.
查看答案
(2003•甘肃)如图,已知⊙O的半径为R,直径AB⊥CD以B为圆心,以BC为半径作弧CED.求弧CED与弧CAD围成的新月形ACED的面积S.
查看答案
(2003•桂林)如图,AB是⊙O的直径,过圆上一点D作⊙O的切线DE,与过点A的直线垂直于E,弦BD的延长线与直线AE交于C点.
(1)求证:点D为BC的中点;
(2)设直线EA与⊙O的另一交点为F,求证:CA
2-AF
2=4CE•EA;
(3)若弧AD=
弧DB,⊙O的半径为r.求由线段DE,AE和弧AD所围成的阴影部分的面积.
查看答案