满分5 > 初中数学试题 >

(2003•上海)如图1所示,在正方形ABCD中,AB=1,是以点B为圆心,AB...

(2003•上海)如图1所示,在正方形ABCD中,AB=1,manfen5.com 满分网是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的任意一点(点E与点A、D不重合),过E作AC所在圆的切线,交边DC于点F,G为切点.
(1)当∠DEF=45°时,求证:点G为线段EF的中点;
(2)设AE=x,FC=y,求y关于x的函数解析式,并写出函数的定义域;
(3)图2所示,将△DEF沿直线EF翻折后得△D1EF,当EF=manfen5.com 满分网时,讨论△AD1D与△ED1F是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由.

manfen5.com 满分网
(1)根据等腰三角形的三线合一进行证明,能够熟练运用等腰直角三角形的性质和切线长定理发现G为线段EF的中点; (2)根据切线长定理、正方形的性质得到有关的线段用x,y表示,再根据勾股定理建立函数关系式. (3)结合(2)中的函数关系式,求得x的值.分两种情况分别分析,根据切线长定理找到角之间的关系,从而发现正方形,根据正方形的性质得到两个角对应相等,从而证明三角形相似. (1)证明:∵∠DEF=45°, ∴∠DFE=90°-∠DEF=45°. ∴∠DFE=∠DEF. ∴DE=DF. 又∵AD=DC, ∴AE=FC. ∵AB是圆B的半径,AD⊥AB, ∴AD切圆B于点A. 同理:CD切圆B于点C. 又∵EF切圆B于点G, ∴AE=EG,FC=FG. ∴EG=FG,即G为线段EF的中点. (2)【解析】 根据(1)中的线段之间的关系,得EF=x+y,DE=1-x,DF=1-y, 根据勾股定理,得: (x+y)2=(1-x)2+(1-y)2 ∴y=(0<x<1). (3)【解析】 当EF=时,由(2)得EF=EG+FG=AE+FC, 即x+=, 解得x1=,x2=. 经检验x1=,x2=是原方程的解. ①当AE=时,△AD1D∽△ED1F, 证明:设直线EF交线段DD1于点H,由题意,得: △EDF≌△ED1F,EF⊥DD1且DH=D1H. ∵AE=,AD=1, ∴AE=ED. ∴EH∥AD1,∠AD1D=∠EHD=90°. 又∵∠ED1F=∠EDF=90°, ∴∠ED1F=∠AD1D. ∴D1F∥AD, ∴∠ADD1=∠DD1F=∠EFD=45°, ∴△ED1F∽△AD1D. ②当AE=时,△ED1F与△AD1D不相似.
复制答案
考点分析:
相关试题推荐
(2003•无锡)(1)解不等式:manfen5.com 满分网
(2)做一做:
manfen5.com 满分网
用四块如图1的瓷砖拼成一个正方形,使拼成的图案成轴对称图形,请你在图2,图3,图4中各画出一种拼法(要求三种拼法各不相同,所画图案中的阴影部分用斜线表示)
(3)读一读:
式子“1+2+3+4+5+…+100”表示1开始的100个连续自然数的和.
由于上述式子比较长,书写也不方便,为了简便起见,我们可以将
“1+2+3+4+5+…+100”表示为manfen5.com 满分网,这里“Σ”是求和符号.
例如:“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为manfen5.com 满分网;又如:“13+23+33+43+53+63+73+83+93+103”可表示为manfen5.com 满分网
同学们,通过对以上材料的阅读,请解答下列问题:
<1>2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为______
<2>计算:manfen5.com 满分网______(填写最后的计算结果).
查看答案
(2003•甘肃)点P(3,4)关于x轴对称的点的坐标为    ;关于原点对称的点的坐标为    查看答案
(2003•南通)正方形既是轴对称图形又是中心对称图形;反过来,既是轴对称图形又是中心对称图形的图形不一定是正方形.例如,圆既是轴对称图形又是中心对称图形,但圆不是正方形.请你在已学过的几何图形中再举两个例子(只要求写出图形名称):①        查看答案
(2003•三明)一张直角三角形的纸片,像如图所示那样折叠,使两个锐角顶点A、B重合.若∠B=30°,
AC=manfen5.com 满分网,则折痕DE的长等于   
manfen5.com 满分网 查看答案
(2003•宁波)如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为轴对称图形:manfen5.com 满分网    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.